不平衡转子系统弯扭耦合复杂故障智能诊断  被引量:1

Intelligent diagnosis of complex bending and torsional coupling faults of unbalanced rotor systems

在线阅读下载全文

作  者:李舜酩[1,2] 陆建涛 沈涛 李香莲 LI Shunming;LU Jiantao;SHEN Tao;LI Xianglian(College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;School of Automotive Engineering,Nantong Institute of Technology,Nantong 226002,China;Intelligent Automobile Department,Shanghai Huawei Technologies Co.,Ltd.,Shanghai 201206,China)

机构地区:[1]南京航空航天大学能源与动力学院,南京210016 [2]南通理工学院汽车工程学院,江苏南通226002 [3]上海华为技术有限公司智能汽车部,上海201206

出  处:《重庆理工大学学报(自然科学)》2023年第7期101-109,共9页Journal of Chongqing University of Technology:Natural Science

基  金:国家自然科学基金项目(51975262)。

摘  要:弯曲振动与扭转振动耦合在旋转机械实际运行中往往不可避免。考虑不平衡转子不同复杂工况的弯扭耦合情况,利用深度学习技术的优势,构建了基于一维卷积神经网络的诊断模型,提出了一种用于处理不平衡转子发生弯曲,扭转以及弯扭耦合振动情况的智能故障诊断方法。分析了数据输入类型和L 2正则化对诊断的影响,优化了诊断模型以提高诊断精度,并进行了试验验证。研究结果表明,该方法可以实现不同转速下,发生弯扭耦合振动时单种或多种复合故障的智能诊断,获得比其他方法更好的诊断效果。The coupling of bending vibration and torsional vibration often exists in the actual operation of rotating machinery.This paper considers the bending and torsional coupling of unbalanced rotors under different complex conditions,and utilizes the advantages of deep learning technology to construct a diagnosis model based on one-dimensional convolutional neural networks.An intelligent fault diagnosis method for handling the bending,torsion and bending torsional coupling vibration of the unbalanced rotors is proposed.The influence of data input type and L 2 regularization on the diagnosis is analyzed,and the diagnosis model is optimized to improve the diagnosis accuracy.The research results indicate that this method can realize intelligent diagnosis of single or multiple composite faults when bending torsional coupling vibration occurs at different speeds,and achieve better diagnostic results than other methods.

关 键 词:转子系统 弯扭耦合振动 深度学习 L 2正则化 

分 类 号:TH17[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象