检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆辉 黄瑞章[1,2] 薛菁菁 任丽娜 林川[1,2] LU Hui;HUANG Ruizhang;XUE Jingjing;REN Lina;LIN Chuan(State Key Laboratory of Public Big Data(Guizhou University),Guiyang Guizhou 550025,China;College of Computer Science and Technology,Guizhou University,Guiyang Guizhou 550025,China)
机构地区:[1]公共大数据国家重点实验室(贵州大学),贵阳550025 [2]贵州大学计算机科学与技术学院,贵阳550025
出 处:《计算机应用》2023年第8期2370-2375,共6页journal of Computer Applications
基 金:国家自然科学基金资助项目(62066007)。
摘 要:互联网的飞速发展使得新闻数据呈爆炸增长的趋势。如何从海量新闻数据中获取当前热门事件的主题演化过程成为文本分析领域研究的热点。然而,常用的传统动态聚类模型处理大规模数据集时灵活性差且效率低下,现有的深度文本聚类模型则缺乏一种通用的方法捕捉时间序列数据的主题演化过程。针对以上问题,设计了一种深度动态文本聚类(DDDC)模型。该模型以现有的深度变分推断算法为基础,可以在不同时间片上捕捉融合了前置时间片内容的主题分布,并通过聚类从这些分布中获取事件主题的演化过程。在真实新闻数据集上的实验结果表明,在不同的数据集上,与动态主题模型(DTM)、变分深度嵌入(VaDE)等算法相比,DDDC模型在各时间片的聚类精度均至少提升了4个百分点,且归一化互信息(NMI)至少提高了3个百分点,验证了DDDC模型的有效性。The rapid development of Internet leads to the explosive growth of news data.How to capture the topic evolution process of current popular events from massive news data has become a hot research topic in the field of document analysis.However,the commonly used traditional dynamic clustering models are inflexible and inefficient when dealing with large-scale datasets,while the existing deep document clustering models lack a general method to capture the topic evolution process of time series data.To address these problems,a Deep Dynamic Document Clustering(DDDC) model was designed.In this model,based on the existing deep variational inference algorithms,the topic distributions incorporating the content of previous time slices on different time slices were captured,and the evolution process of event topics was captured from these distributions through clustering.Experimental results on real news datasets show that compared with Dynamic Topic Model(DTM),Variational Deep Embedding(VaDE) and other algorithms,DDDC model has the clustering accuracy and Normalized Mutual Information(NMI) improved by at least 4 percentage points averagely and at least 3 percentage points respectively in each time slice on different datasets,verifying the effectiveness of DDDC model.
关 键 词:文本动态聚类 事件主题演化 主题分布 时间序列数据 深度变分推断
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7