检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔雨萌 王靖亚[1] 刘晓文 闫尚义 陶知众 CUI Yumeng;WANG Jingya;LIU Xiaowen;YAN Shangyi;TAO Zhizhong(School of Information and Cyber Security,People’s Public Security University of China,Beijing 100038,China)
机构地区:[1]中国人民公安大学信息网络安全学院,北京100038
出 处:《计算机应用》2023年第8期2396-2405,共10页journal of Computer Applications
基 金:国家社会科学基金资助项目(20AZD114)。
摘 要:针对当前分类模型通常仅对一种长度文本有效,而在实际场景中长短文本大量混合存在的问题,提出了一种基于混合神经网络的通用型长短文本分类模型(GLSTCM-HNN)。首先,利用BERT(Bidirectional Encoder Representations from Transformers)对文本进行动态编码;然后,使用卷积操作提取局部语义信息,并构建双通道注意力机制(DCATT)对关键文本区域增强;同时,使用循环神经网络(RNN)捕获全局语义信息,并建立长文本裁剪机制(LTCM)来筛选重要文本;最后,将提取到的局部和全局特征进行融合降维,并输入到Softmax函数里以得到类别输出。在4个公开数据集上的对比实验中,与基线模型(BERT-TextCNN)和性能最优的对比模型(BERT)相比,GLSTCMHNN的F1分数至多分别提升了3.87和5.86个百分点;在混合文本上的两组通用性实验中,GLSTCM-HNN的F1分数较已有研究提出的通用型模型——基于Attention的改进CNN-BiLSTM/BiGRU混联文本分类模型(CBLGA)分别提升了6.63和37.22个百分点。实验结果表明,所提模型能够有效提高文本分类任务的准确性,并具有在与训练数据长度不同的文本上以及在长短混合文本上分类的通用性。Focused on the issue that current classification models are generally effective on texts of one length,and a large number of long and short texts occur in actual scenes in a mixed way,a General Long and Short Text Classification Model based on Hybrid Neural Network(GLSTCM-HNN) was proposed.Firstly,BERT(Bidirectional Encoder Representations from Transformers) was applied to encode texts dynamically.Then,convolution operations were used to extract local semantic information,and a Dual Channel ATTention mechanism(DCATT) was built to enhance key text regions.Meanwhile,Recurrent Neural Network(RNN) was utilized to capture global semantic information,and a Long Text Cropping Mechanism(LTCM) was established to filter critical texts.Finally,the extracted local and global features were fused and input into Softmax function to obtain the output category.In comparison experiments on four public datasets,compared with the baseline model(BERT-TextCNN) and the best performing comparison model BERT,GLSTCM-HNN has the F1 scores increased by up to 3.87 and 5.86 percentage points respectively.In two generality experiments on mixed texts,compared with the generality model — CNN-BiLSTM/BiGRU hybrid text classification model based on Attention(CBLGA) proposed by existing research,GLSTCM-HNN has the F1 scores increased by 6.63 and 37.22 percentage points respectively.Experimental results show that the proposed model can improve the accuracy of text classification task effectively,and has generality of classification on texts with different lengths from training data and on long and short mixed texts.
关 键 词:深度学习 文本分类 注意力机制 裁剪机制 通用型模型
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38