The a Posteriori Error Estimates for Chebyshev-Galerkin Spectral Methods in One Dimension  

在线阅读下载全文

作  者:Jianwei Zhou 

机构地区:[1]Department of Mathematics,Linyi University,Shandong 276005,China

出  处:《Advances in Applied Mathematics and Mechanics》2015年第2期145-157,共13页应用数学与力学进展(英文)

基  金:This work was supported by National Natural Science Foun-dation of China(Grant No.11201212 and 11301252),CSC(No.201408380045);Promotive Research Fund for Excellent Young and Middle-Aged Scientists of Shandong Province(No.BS2012DX004)and AMEP of Linyi University.

摘  要:In this paper,the Chebyshev-Galerkin spectral approximations are em-ployed to investigate Poisson equations and the fourth order equations in one dimen-sion.Meanwhile,p-version finite element methods with Chebyshev polynomials are utilized to solve Poisson equations.The efficient and reliable a posteriori error esti-mators are given for different models.Furthermore,the a priori error estimators are derived independently.Some numerical experiments are performed to verify the the-oretical analysis for the a posteriori error indicators and a priori error estimations.

关 键 词:Chebyshev-Galerkin spectral approximation Chebyshev polynomial a posteriori error indicator p-versionfinite element method 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象