Evolutionary games and spatial periodicity  

在线阅读下载全文

作  者:Te Wu Feng Fu Long Wang 

机构地区:[1]Center for Complex Systems,Xidian University,Xi’an,China [2]Department of Mathematics,Dartmouth College,Hanover,NH,United States of America [3]Center for Systems and Control,College of Engineering,Peking University,Beijing,China

出  处:《Journal of Automation and Intelligence》2023年第2期79-86,共8页自动化与人工智能(英文)

基  金:support from NSFC,China(62036002,62273226)is gratefully acknowledged;supported by the Fundamental Research Funds for Central Universities,Xidian University,China(JB210414).

摘  要:Spatial interactions are considered an important factor influencing a variety of evolutionary processes that take place in structured populations.It still remains an open problem to fully understand evolutionary game dynamics on networks except for certain limiting scenarios such as weak selection.Here we study the evolutionary dynamics of spatial games under strong selection where strategy evolution of individuals becomes deterministic in a fashion of winners taking all.We show that the long term behavior of the evolutionary process eventually converges to a particular basin of attraction,which is either a periodic cycle or a single fixed state depending on specific initial conditions and model parameters.In particular,we find that symmetric starting configurations can induce an exceedingly long transient phase encompassing a large number of aesthetic spatial patterns including the prominent kaleidoscopic cooperation.Our finding holds for any population structure and a broad class of finite games beyond the Prisoner’s Dilemma.Our work offers insights into understanding evolutionary dynamics of spatially extended systems ubiquitous in biology and ecology.

关 键 词:Spatial games Evolutionary dynamics Periodic cycles Kaleidoscopic cooperation Spatial reciprocity 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象