检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李濮如 吴琼 任洪波 李琦芬 杨涌文 LI Pu-ru;WU Qiong;REN Hong-bo;LI Qi-fen;YANG Yong-wen(Energy and Mechanical Engineering College,Shanghai University of Electric Power,Shanghai 201306,China)
机构地区:[1]上海电力大学能源与机械工程学院,上海201306
出 处:《科学技术与工程》2023年第22期9492-9501,共10页Science Technology and Engineering
基 金:国家自然科学基金(71804106);上海市青年科技启明星计划(22QA1403900)。
摘 要:基于价格型需求响应的家庭能源管理系统优化调度可显著提升家庭用能体验。同时,用户侧光储充一体化用电新模式也给家庭能源管理带来新的挑战。针对供给侧光伏出力问题,提出了一种耦合改进惯性权重混沌粒子群算法和长短期记忆神经网络的ICPSO-LSTM组合预测模型,对光伏发电进行精准化预测;针对用能侧负荷多样性特点,将其划分为不可调度、可中断、可转移三类进行精细化建模,并综合考虑电动汽车短途、中途、长途个性化用能行为及反向供电模式Vehicle to Home(V2H)。在此基础上,根据不同用能偏好,将用户划分为经济型、标准型和舒适型,构建考虑用户用能成本和舒适度的多目标优化模型,并采用ICPSO算法进行求解。最后,对比分析了典型场景下家庭能源管理系统的实施效果。The optimal scheduling of household energy management system based on price-based demand response can significantly improve household energy use experience.Meanwhile,the charging-PV-storage integrated electricity utilization mode on the demandside also brings new challenges to household energy management.An ICPSO-LSTM combined forecasting model coupling improved inertia weight chaotic particle swarm optimization algorithm and short-term memory neural network was proposed to accurately predict the output of the photovoltaic units.To model the diversity of demand-side loads,three categories were considered,namely,non-schedulable,interruptible and transferable ones.In addition,the short-distance,midway and long-distance using behavior of electric vehicles,as well as the reverse power supply mode Vehicle to Home(V2H)were considered.Following which,according to different preferences,end-users were divided into economic type,standard type and comfortable type.A multi-objective optimization model considering energy cost and user comfort was developed and solved by the algorithm.Finally,the implementation effect of the household energy management system under typical scenarios was compared and analyzed.
关 键 词:家庭能源管理 改进粒子群算法 长短期记忆神经网络 多目标优化
分 类 号:TK019[动力工程及工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7