Random Walk Approximation for Irreversible Drift-Diffusion Process on Manifold:Ergodicity,Unconditional Stability and Convergence  

在线阅读下载全文

作  者:Yuan Gao Jian-Guo Liu 

机构地区:[1]Department of Mathematics,Purdue University,West Lafayette,IN,USA [2]Departments of Mathematics and Physics,Duke University,Durham,NC,USA

出  处:《Communications in Computational Physics》2023年第6期132-172,共41页计算物理通讯(英文)

基  金:Jian-Guo Liu was supported in part by NSF under awards DMS-2106988;by NSF RTG grant DMS-2038056;Yuan Gao was supported by NSF under awards DMS-2204288.

摘  要:Irreversible drift-diffusion processes are very common in biochemical reactions.They have a non-equilibrium stationary state(invariant measure)which does not satisfy detailed balance.For the corresponding Fokker-Planck equation on a closed manifold,using Voronoi tessellation,we propose two upwind finite volume schemes with or without the information of the invariant measure.Both schemes possess stochastic Q-matrix structures and can be decomposed as a gradient flow part and a Hamiltonian flow part,enabling us to prove unconditional stability,ergodicity and error estimates.Based on the two upwind schemes,several numerical examples–including sampling accelerated by a mixture flow,image transformations and simulations for stochastic model of chaotic system–are conducted.These two structurepreserving schemes also give a natural random walk approximation for a generic irreversible drift-diffusion process on a manifold.This makes them suitable for adapting to manifold-related computations that arise from high-dimensional molecular dynamics simulations.

关 键 词:Symmetric decomposition non-equilibrium thermodynamics enhancement by mixture exponential ergodicity structure-preserving numerical scheme 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象