NATURALLY REDUCTIVE(α_(1),α_(2))METRICS  

在线阅读下载全文

作  者:谭举 许明 Ju TAN;Ming XU(School of Microelectronics and Data Science,Anhui University of Technology,Maanshan 243032,China;School of Mathematical Sciences,Capital Normal University,Beijing 100048,China)

机构地区:[1]School of Microelectronics and Data Science,Anhui University of Technology,Maanshan 243032,China [2]School of Mathematical Sciences,Capital Normal University,Beijing 100048,China

出  处:《Acta Mathematica Scientia》2023年第4期1547-1560,共14页数学物理学报(B辑英文版)

基  金:the National Natural Science Foundation of China(12131012,12001007,11821101);the Beijing Natural Science Foundation(1222003,Z180004);the Natural Science Foundation of Anhui province(1908085QA03)。

摘  要:Letting F be a homogeneous(α_(1),α_(2))metric on the reductive homogeneous manifold G/H,we first characterize the natural reductiveness of F as a local f-product between naturally reductive Riemannian metrics.Second,we prove the equivalence among several properties of F for its mean Berwald curvature and S-curvature.Finally,we find an explicit flag curvature formula for G/H when F is naturally reductive.

关 键 词:(α_1 α_2)metric homogeneous Finsler space naturally reductive S-CURVATURE 

分 类 号:O186.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象