检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:岑金夏 Stanislaw MIGóRSKI Emilio VILCHES 曾生达 Jinxia CEN;Stanislaw MIGóRSKI;Emilio VILCHES;Shengda ZENG(School of Mathematical Sciences,Zhejiang Normal University,Jinhua 321004,China;Jagiellonian University in Krakow,Chair of Optimization and Control,ul.Lojasiewicza 6,30348 Krakow,Poland;Instituto de Ciencias de la Ingenier´ıa,Universidad de O’Higgins,Av.Libertador Bernardo OHiggins 611,2841959 Rancagua,Chile;Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing,Yulin Normal University,Yulin 537000,China;Department of Mathematics Nanjing University,Nanjing 210093,China;Jagiellonian University in Krakow,Faculty of Mathematics and Computer Science,ul.Lojasiewicza 6,30348 Krakow,Poland)
机构地区:[1]School of Mathematical Sciences,Zhejiang Normal University,Jinhua 321004,China [2]Jagiellonian University in Krakow,Chair of Optimization and Control,ul.Lojasiewicza 6,30348 Krakow,Poland [3]Instituto de Ciencias de la Ingenier´ıa,Universidad de O’Higgins,Av.Libertador Bernardo OHiggins 611,2841959 Rancagua,Chile [4]Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing,Yulin Normal University,Yulin 537000,China [5]Department of Mathematics Nanjing University,Nanjing 210093,China [6]Jagiellonian University in Krakow,Faculty of Mathematics and Computer Science,ul.Lojasiewicza 6,30348 Krakow,Poland
出 处:《Acta Mathematica Scientia》2023年第4期1645-1667,共23页数学物理学报(B辑英文版)
基 金:the NSF of Guangxi(2021GXNSFFA196004,GKAD23026237);the NNSF of China(12001478);the China Postdoctoral Science Foundation(2022M721560);the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No.823731 CONMECH;the National Science Center of Poland under Preludium Project(2017/25/N/ST1/00611);the Startup Project of Doctor Scientific Research of Yulin Normal University(G2020ZK07);the Ministry of Science and Higher Education of Republic of Poland(4004/GGPJII/H2020/2018/0,440328/Pn H2/2019)。
摘 要:In this paper we study a nonstationary Oseen model for a generalized Newtonian incompressible fluid with a time periodic condition and a multivalued,nonmonotone friction law.First,a variational formulation of the model is obtained;that is a nonlinear boundary hemivariational inequality of parabolic type for the velocity field.Then,an abstract first-order evolutionary hemivariational inequality in the framework of an evolution triple of spaces is investigated.Under mild assumptions,the nonemptiness and weak compactness of the set of periodic solutions to the abstract inequality are proven.Furthermore,a uniqueness theorem for the abstract inequality is established by using a monotonicity argument.Finally,we employ the theoretical results to examine the nonstationary Oseen model.
关 键 词:nonstationary Oseen model Newtonian incompressible fluid hemivariational inequality periodic solution generalized subgradient
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.111.209