LARGE DEVIATIONS FOR TOP EIGENVALUES OFβ-JACOBI ENSEMBLES AT SCALING TEMPERATURES  

在线阅读下载全文

作  者:雷良贞 马宇韬 Liangzhen LEI;Yutao MA(School of Mathematical Science,Capital Normal University,Beijing 100048,China;School of Mathematical Sciences&Laboratory of Mathematics and Complex Systems of Ministry of Education,Beijing Normal University,Beijing 100875,China)

机构地区:[1]School of Mathematical Science,Capital Normal University,Beijing 100048,China [2]School of Mathematical Sciences&Laboratory of Mathematics and Complex Systems of Ministry of Education,Beijing Normal University,Beijing 100875,China

出  处:《Acta Mathematica Scientia》2023年第4期1767-1780,共14页数学物理学报(B辑英文版)

基  金:supported by the NSFC (12171038,11871008);985 Projects.

摘  要:Letλ=(λ_(1),…,λ_(n))beβ-Jacobi ensembles with parameters p_(1),p_(2),n andβ,withβvarying with n.Set■.Suppose that■and 0≤σγ<1.We offer the large deviation for p_(1)+p_(2)/p_(1)■λ_(i)whenγ>0 via the large deviation of the corresponding empirical measure and via a direct estimate,respectively,whenγ=0.

关 键 词:β-Jacobi ensemble large deviation Wachter law extremal eigenvalue 

分 类 号:O175.9[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象