BLOW-UP SOLUTIONS OF TWO-COUPLED NONLINEAR SCHR?DINGER EQUATIONS IN THE RADIAL CASE  

在线阅读下载全文

作  者:白欠欠 李晓光 张莉 Qianqian BAI;Xiaoguang LI;Li ZHANG(School of Mathematics Science and V.C.&V.R.Key Laboratory of Sichuan Province,Sichuan Normal University,Chengdu 610068,China;V.C.&V.R.Key Laboratory of Sichuan Province,Sichuan Normal University,Chengdu 610068,China)

机构地区:[1]School of Mathematics Science and V.C.&V.R.Key Laboratory of Sichuan Province,Sichuan Normal University,Chengdu 610068,China [2]V.C.&V.R.Key Laboratory of Sichuan Province,Sichuan Normal University,Chengdu 610068,China

出  处:《Acta Mathematica Scientia》2023年第4期1852-1864,共13页数学物理学报(B辑英文版)

基  金:the National Natural Science Foundation of China(11771314);the Sichuan Science and Technology Program(2022JDTD0019);the Guizhou Province Science and Technology Basic Project(Qian Ke He Basic[2020]1Y011)。

摘  要:We consider the blow-up solutions to the following coupled nonlinear Schr¨odinger equations{iu_(t)+Δu+(|u|^(2p)+|u|^(p−1)|v|^(p+1))u=0,iv_(t)+Δv+(|v|^(2p)+|v|^(p−1)|u|^(p+1))v=0,u(0,x)=u0(x),v(0,x)=v0(x),x 2 R N,t0.On the basis of the conservation of mass and energy,we establish two sufficient conditions to obtain the existence of a blow-up for radially symmetric solutions.These results improve the blow-up result of Li and Wu[10]by dropping the hypothesis of finite variance((|x|u_(0),|x|v_(0))∈ L^(2)(R^(N))×L^(2)(R^(N))).

关 键 词:SchrOdinger equations radial symmetry BLOW-UP virial identity 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象