检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢明洪 谭忠 Minghong XIE;Zhong TAN(School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China;School of Mathematical Science,Xiamen University,Xiamen 361005,China;Shenzhen Research Institute of Xiamen University,Shenzhen 518057,China)
机构地区:[1]School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China [2]School of Mathematical Science,Xiamen University,Xiamen 361005,China [3]Shenzhen Research Institute of Xiamen University,Shenzhen 518057,China
出 处:《Acta Mathematica Scientia》2023年第4期1881-1914,共34页数学物理学报(B辑英文版)
基 金:the NNSF of China(12071391);the Guangdong Basic and Applied Basic Research Foundation (2022A1515010069)。
摘 要:We study a spatiotemporal EIT problem with a dynamical boundary condition for the fractional Dirichlet-to-Neumann operator with a critical exponent.There are three major ingredients in this paper.The first is the finite time blowup and the decay estimate of the global solution with a lower-energy initial value.The second ingredient is the L^(q)(2 ≤q <∞) estimate of the global solution applying the Moser iteration,which allows us to show that any global solution is a classical solution.The third,which is the main ingredient of this paper,explores the long time asymptotic behavior of global solutions close to the stationary solution and the bubbling phenomenons by means of a concentration compactness principle.
关 键 词:spatiotemporal EIT problem fractional Dirichlet-to-Neumann operator critical exponent bubbling phenomena
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49