检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘昊 刘翔[1] 赵静文 张星 PAN Hao;LIU Xiang;ZHAO Jingwen;ZHANG Xing(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Management,Shanghai University of Engineering Science,Shanghai 201620,China;School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212023,China)
机构地区:[1]上海工程技术大学电子电气工程学院,上海201620 [2]上海工程技术大学管理学院,上海201620 [3]江苏大学汽车工程学院,江苏镇江212023
出 处:《电子科技》2023年第8期35-42,共8页Electronic Science and Technology
基 金:中国高校产学研创新基金(2021FNB02001);文化部科技创新项目(2015KJCXXM19)。
摘 要:针对密集场景下行人检测的遮挡问题,文中提出了基于YOLO(You Only Look Once)的SC-YOLOv4人群检测网络。在YOLOv4的CSPNet(Cross Stage Partial Network)结构基础上,结合ShuffleNetv2网络思想改进普通卷积结构,将原来普通的残差模块替换为Shuffle Module模块,提出了基于S-CSPDarkNet53(Shuffle CSPDarkNet53)的骨干网络结构,在保留精度的同时降低了网络参数量。文中在保留原来PANet(Path Aggregation Network)结构的基础上设计中心点预测模块,将原来的3个输出特征层改用基于中心点的预测方法,即对目标的中心点进行回归和训练计算损失,摒弃了原来的NMS(Non-Maximum Suppression)操作,进一步提高遮挡情况下的检测精度。实验结果表明,在CrowdHuamn数据集上采用S-CSPDarkNet53结构的YOLOv4较原网络的参数量显著减少,检测速度提升了5.2 frame·s^(-1),而最终的SC-YOLOv4网络在检测速度上较YOLOv4提升了4.9 frame·s^(-1)。For the occlusion problem of pedestrian detection in dense scenes,this study proposes the SC-YOLOv4 crowd detection network based on YOLO.Based on the CSPNet structure of YOLOv4 and combined with the idea of ShuffleNetv2 network,the common convolution structure is improved,and the original common residual module is replaced with the Shuffle Module.A backbone network structure based on S-CSPDarkNet53 is proposed,which preserves the accuracy and reduces the number of network parameters.The centroid prediction module is designed on the basis of retaining the original PANet structure,and the original three output feature layers are replaced with a centroid-based prediction method,that is,the regression and training of the target center point are carried out to calculate the loss,and the original NMS operation is discarded to further improve the detection accuracy in the case of occlusion.The experimental results show that YOLOv4 with S-CSPDarkNet53 structure on the CrowdHuamn data set reduces the amount of parameters and improves the detection speed by 5.2 frame·s^(-1) when compared with the original network.Compared with YOLOv4,the final SC-YOLOv4 network improves the detection speed by 4.9 frame·s^(-1).
关 键 词:人群检测 YOLO Shuffle Module 中心点检测 密集人群 CrowdHuman CSPNet YOLOv4
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.206.240