检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨宇辉 魏昕[1] 隆志力 汪永超 杜志钢 李毅 YANG Yu-hui;WEI Xin;LONG Zhi-li;WANG Yong-chao;DU Zhi-gang;LI Yi(Guangdong University of Technology,School of Electromechanical Engineering,Guangzhou 510006,China;Harbin Institute of Technology,School of Mechanical Engineering and Automation,Guangdong Shenzhen 518055,China;School of Intelligent Manufacturing,Guangzhou Panyu Polytechnic,Guangzhou,511483,China)
机构地区:[1]广东工业大学机电工程学院,广州510006 [2]哈尔滨工业大学(深圳)机电工程与自动化学院,广东深圳518055 [3]广州番禺职业技术学院智能制造学院,广州511483
出 处:《表面技术》2023年第8期71-88,共18页Surface Technology
基 金:广东省重点研发计划项目(2020B09092601);国家自然科学基金(U1913215,U1713206);深圳市基础研究计划(JCYJ20200109113429208,JCYJ2020109112803851,GJHZ20180928154402130)。
摘 要:首先,对表面完整性的基本概念和内涵进行了概述,同时简要介绍了超声实现滚压技术的基本原理及其优点。随后,对比分析了不同剧烈塑性变形方法的特点和局限性,引出了实现表面完整性的相关剧烈塑性变形协调机制。在此基础上,随后结合其他剧烈塑性变形强化工艺,重点总结了超声滚压剧烈塑性变形对金属材料表面微观结构演变的影响。具体探讨了剧烈塑性变形诱导晶粒细化机制、晶粒生长机制以及合金元素偏聚机制等,主要分别论述了不同层错能的面心立方、体心立方以及密排六方等不同金属晶体结构的晶粒细化机制(以位错滑移、变形孪晶为主导)、晶粒长大机制(以晶界迁移、晶粒旋转为主要)与合金元素偏聚机制(晶界偏聚、位错核心偏聚)等。最后,对以上内容进行了综合总结,并针对超声滚压技术研究中存在的问题给出进一步研究和发展的建议,从而为实现超声滚压金属材料的表面完整性的主动精准控制及提高其服役寿命与可靠性提供一定的参考。The ultrasonic surface rolling process(USRP)represents an emerging surface strengthening technique within the realm of severe plastic deformation(SPD).Owing to its remarkable merits in enhancing surface integrity,fatigue resistance,corrosion resistance,and wear resistance,USRP has garnered considerable attention.This discussion encapsulates the fundamental essence of surface integrity,provides a succinct introduction to the principles and benefits of USRP,and subsequently undertakes a comparative and analytical evaluation of plastic deformation attributes and constraints across various SPD methodologies.The advancement of USRP in influencing the microstructural evolution of surfaces via SPD is the focal point of this review.A plethora of investigations have underscored that among the mechanisms of plastic deformation,dislocation slip and deformation twinning emerge as the most prevalent contenders during the grain refinement progression of coarse-grained metallic materials.It is noteworthy that the plastic deformation mechanisms diverge due to dissimilar stacking faults and crystal structures inherent in different metal materials.Classified according to the plastic deformation mechanisms,this discourse delves into the realm of face-centered cubic(FCC)metal materials,delineating the prevalence of the dislocation slip mechanism for grain refinement in materials with elevated stacking fault energy.Middle-level FCC metal materials,under typical deformation conditions(e.g.,room temperature,low stress,low strain rate),predominantly undergo dislocation slip as the primary plastic deformation mechanism.In contrast,under extreme deformation conditions(e.g.,low temperature,high stress,high strain rate),deformation twinning takes precedence.For FCC metal materials characterized by low stacking fault energy,a coupling of deformation twin and dislocation slip mechanisms orchestrates the plastic deformation.In the context of body-centered cubic(BCC)metal materials,where the stacking fault energy is generally high,the grain ref
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49