Discrete Phase Shifts Control and Beam Selection in RIS-Aided MISO System via Deep Reinforcement Learning  被引量:1

在线阅读下载全文

作  者:Dongting Lin Yuan Liu 

机构地区:[1]School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510641,China

出  处:《China Communications》2023年第8期198-208,共11页中国通信(英文版)

摘  要:Reconfigurable intelligent surface(RIS)for wireless networks have drawn lots of attention in both academic and industry communities.RIS can dynamically control the phases of the reflection elements to send the signal in the desired direction,thus it provides supplementary links for wireless networks.Most of prior works on RIS-aided wireless communication systems consider continuous phase shifts,but phase shifts of RIS are discrete in practical hardware.Thus we focus on the actual discrete phase shifts on RIS in this paper.Using the advanced deep reinforcement learning(DRL),we jointly optimize the transmit beamforming matrix from the discrete Fourier transform(DFT)codebook at the base station(BS)and the discrete phase shifts at the RIS to maximize the received signal-to-interference plus noise ratio(SINR).Unlike the traditional schemes usually using alternate optimization methods to solve the transmit beamforming and phase shifts,the DRL algorithm proposed in the paper can jointly design the transmit beamforming and phase shifts as the output of the DRL neural network.Numerical results indicate that the DRL proposed can dispose the complicated optimization problem with low computational complexity.

关 键 词:reconfigurable intelligent surface discrete phase shifts transmit beamforming deep reinforcement learning 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TN929.5[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象