检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:滕浩文 揭豪 廖家伟[1] 洪伟荣[1] TENG Haowen;JIE Hao;LIAO Jiawei;HONG Weirong(College of Energy Engineering,Zhejiang University,Hangzhou Zhejiang 310027,China)
出 处:《电源技术》2023年第8期1069-1074,共6页Chinese Journal of Power Sources
基 金:浙江省重点研发计划(2021C01100)。
摘 要:Kriging模型具有良好的函数逼近能力,能同时给出预测值和误差估计。引入Kriging模型建立固体氧化物燃料电池(SOFC)代理模型,可在准确预测电池性能的同时降低在线计算成本。为构建SOFC变工况操作下的数据集,建立了三维多物理场仿真模型,数值模拟结果与实验数据吻合。利用随机采样和数值模拟生成样本空间,比较了七种采用不同相关函数的Kriging模型,分析了样本数量对模型准确性的影响以及小样本情况下模型的鲁棒性。结果表明,采用高斯相关函数的Kriging模型在SOFC性能预测方面具有较为优越的综合表现,并给出了平衡计算精度和时间成本的样本数量参考值,具有一定实用价值。Kriging model has a good ability to approximate nonlinear functions,where the predicted value and error estimation can be supplied simultaneously.Therefore,Kriging models were introduced to construct the surrogate model of solid oxide fuel cells(SOFC),which can accurately predict cell performance and reduce online computing costs.A three-dimensional multi-physics simulation model was developed to obtain the sample set.The numerical results show good agreement with experimental data.By using random sampling and numerical simulation to generate sample space,seven Kriging surrogates with different correlation models were compared.The influence of sample size on the model accuracy and the model robustness were analyzed.The results show that the Kriging surrogate with the Gaussian correlation model has superior and comprehensive performance.The reference value of sample size which can balance accuracy and time cost is also given.These results have certain practical value in the surrogate modeling of SOFC.
关 键 词:固体氧化物燃料电池 代理模型 KRIGING模型 相关函数
分 类 号:TM911.4[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.36.48