检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:靖琦东 翟值楚 周在龙 杨松柏 Jing Qidong;Zhai Zhichu;Zhou Zailong;Yang Songbai(CEC Industrial Internet Co.,Ltd.,Changsha Hunan 410000,China)
机构地区:[1]中电工业互联网有限公司,湖南长沙410000
出 处:《通信技术》2023年第6期744-749,共6页Communications Technology
摘 要:上下位关系抽取是知识图谱构建的关键环节,目前常用的基于模板和分布式的方法存在可移植性差、召回率低等不足。针对这些问题,提出了一种基于多通道特征融合的上下位关系抽取方法,通过预训练词嵌入、双向LSTM和依存句法树结果编码三个通道来构建模型编码器。首先,提出了上下位关系抽取整体框架,包括数据挖掘与标注模块、特征抽取模块、候选句打分模块及结果排序模块。然后,针对特征抽取模块,提出了融合句法依存关系、上下文特征以及预训练特征的自适应编码方法;针对句子打分模块,提出了包含编解码器结构的网络模型。最后,通过对准确率、召回率、查全率进行消融实验,表明所提出的模型具有较好的有效性和更好的可解释性。Hypernymy relationship extraction is a key step in the construction of knowledge graphs.Currently,the commonly used template-based and distributed methods have shortcomings such as poor portability and low recall rate.To address these issues,a multi-channel feature fusion based hypernymy relationship extraction method is proposed,which constructs a model encoder through three channels:pre-trained word embedding,bi-directional LSTM,and dependency syntax tree result encoding.First,an overall framework for hypernymy relationship extraction is proposed,which includes data mining and annotation modules,feature extraction modules,candidate sentence scoring modules and result sorting modules.Then,for the feature extraction module,an adaptive encoding method integrating syntactic dependencies,contextual features,and pre-trained features is proposed;and for the sentence scoring module,a network model including codec structure is proposed.Finally,the ablation experiments on the accuracy rate,recall rate,etc.,indicate that the proposed model has better validity and better interpretability.
关 键 词:上下位关系抽取 多通道特征融合 图卷积网络 依存句法树
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49