用于玻璃热压印的高温快速均匀加热模块的制造及优化  被引量:3

Fabrication and optimization of high-temperature uniform rapid heating module for glass hot embossing

在线阅读下载全文

作  者:王鑫[1] 龚峰[1] 张志辉[2] 杨高 WANG Xin;GONG Feng;CHEUNG Chifai;YANG Gao(Shenzhen Key Laboratory of High-performance Nontraditional Manufacturing,College of Mechatronics and Control Engineering,Shenzhen University,Shenzhen 518060,China;State Key Laboratory of Ultra-precision Machining Technology,Department of Industrial and Systems Engineering,The Hong Kong Polytechnic University,Hong Kong 999077,China)

机构地区:[1]深圳大学机电与控制工程学院,深圳市高性能特种制造重点实验室,广东深圳518060 [2]香港理工大学工业及系统工程系,超精密加工技术国家重点实验室,中国香港999077

出  处:《光学精密工程》2023年第15期2203-2217,共15页Optics and Precision Engineering

基  金:国家自然科学基金面上项目(No.52171076);广东省自然科学基金面上项目(No.2023A1515012239);深港创新圈联合资助项目(No.SGDX20190919094403772);深圳市高等院校稳定支持项目(No.202208091725520030);香港特别行政区政府创新科技基金资助项目(No.GHP/142/19SZ)。

摘  要:热压印技术是实现高性能玻璃微光学元件低成本绿色制造的有效途径,但是,由于加热冷却周期较长,温度均匀性不高,其制造效率和成型质量被限制。因此,有必要开发高温快速均匀加热模块,实现高效高质热压印成型。首先,基于氮化硅陶瓷加热片设计制造加热模块,搭建加热测试平台,实现加热模块表面温度分布的实时监测;然后,开展恒电压加热重复性测试,评估实验结果的可靠性;接着,建立和修正加热模块恒电压加热有限元仿真模型,并结合有限元仿真模型和正交试验法对加热模块结构进行优化,以提高加热速率和温度均匀性。实验结果表明:优化后的加热模块不仅加热速率快,而且温度分布均匀。进行180 s恒电压加热测试时,加热模块的升温速率可达363℃/min,表面温差为10.7℃。对加热模块进行700℃控温加热时,实测温度曲线与设定温度曲线基本一致,温度波动在0.3℃以内,尤其中心20 mm×30 mm区域的温差在2℃左右。最后,将高温快速均匀加热模块集成于热压印装置,实现了N-BK7玻璃微结构阵列的高效率高质量热压印成型。Hot embossing is a promising technology for fabricating high-performance glass micro-optical components at low-cost and in a green manner.However,the efficiency and accuracy of hot embossing are limited by the long heating-cooling cycle time and the low uniformity of temperature distribution,respectively.Therefore,it is necessary to develop a high-temperature rapid uniform heating module to improve the efficiency and accuracy of hot embossing.First,a heating module based on a silicon nitride ceramic heater was designed and fabricated,and a heating test platform was constructed,enabling the real-time monitoring of the temperature distribution of the heating module.Constant-voltage heating tests were re⁃peatedly conducted to demonstrate the reproducibility of the experiments.Subsequently,a numerical sim⁃ulation model was established for the heating module,and the accuracy of the finite element model was evaluated by comparing the simulated and experimental results under the same process conditions.Numer⁃ical simulation and orthogonal tests were performed to optimize the heating module and hence obtain de⁃cent uniformity of the temperature distribution and a rapid heating rate.The experimental results indicate that the optimized heating module not only had a rapid heating rate but also a uniform temperature distribu⁃tion.In the constant-voltage heating tests,the heating rate of the optimized heating module is as high as 363℃/min,and the maximum temperature difference is 10.7℃,which validates the feasibility of the op⁃timization method.In the controlled heating test,the measured temperature curve is essentially consistent with the set temperature curve,and the temperature fluctuation is within 0.3℃.In particular,the tem⁃perature difference in the central area of 20 mm×30 mm is approximately 2℃.Finally,the optimized rapid heating module and a precision temperature control system were integrated into a high-temperature hot embossing machine,which achieved efficient hot embossing of high-quality N

关 键 词:热压印 加热 温度均匀性 有限元仿真 正交试验 

分 类 号:TB133[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象