检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yun-Tian Chen Dong-Xiao Zhang Qun Zhao De-Xun Liu
机构地区:[1]Eastern Institute for Advanced Study,Zhejiang,315200,China [2]Department of Mathematics and Theories,Peng Cheng Laboratory,Guangdong,518055,China [3]National Center for Applied Mathematics Shenzhen(NCAMS),Southern University of Science and Technology,Guangdong,518055,China [4]Research Institute of Petroleum Exploration and Development,CNPC,Bejing,100083,China
出 处:《Petroleum Science》2023年第3期1788-1805,共18页石油科学(英文版)
摘 要:An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.
关 键 词:Interpretable machine learning Operational parameters optimization Shapley value Shale gas development Neural network
分 类 号:TE311[石油与天然气工程—油气田开发工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112