检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高艺婕 GAO Yijie(Department of Data Science and Big Data Technology,Shanghai International Studies Univesity,Shanghai 201620,China)
机构地区:[1]上海外国语大学数据科学与大数据技术系,上海201620
出 处:《智能计算机与应用》2023年第7期64-70,75,共8页Intelligent Computer and Applications
摘 要:为了保障金融机构的金融安全,应用机器学习进行信贷违约预测已成为研究重点。为此,构建了6个机器学习基模型,调至最优参数后再分别用Voting、Stacking、Adaboost方法集成。实验表明,在多种基模型中,随机森林(RF)取得了较好的效果;而在集成方法中,Adaboost对基模型的提升最显著。文中构建的Adaboost-RF模型在信贷预测上的交叉验证得分达到了0.904,明显优于其它方法,该方法对金融机构制定信贷决策具有一定的借鉴意义。In order to ensure the financial safety of financial institutions,the application of machine learning in credit default prediction has become a research focus.To this end,six machine learning base models are constructed,and after tuning to optimal parameters,they are integrated separately using Voting,Stacking and Adaboost methods.The experiment shows that among multiple base models,the Random Forest(RF)achieves better results;while in the ensemble methods,Adaboost had the most significant improvement on the base models.The Adaboost-RF model achieves a cross-validation score of 0.904 in credit prediction,which is significantly better than other methods,and this method has certain reference value for financial institutions in making credit decisions.
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33