仿真驱动下基于Ramanujan周期变换的轴承早期故障特征提取  被引量:1

Extraction of Early Fault Features of Bearings Based on Ramanujan Period Transform Method Driven by Simulation

在线阅读下载全文

作  者:胡文扬 王天杨[1] 张飞斌 褚福磊[1] HU Wenyang;WANG Tianyang;ZHANG Feibin;CHU Fulei(Department of Mechanical Engineering,Tsinghua University,Beijing 100084)

机构地区:[1]清华大学机械工程系,北京100084

出  处:《机械工程学报》2023年第13期148-156,共9页Journal of Mechanical Engineering

基  金:国家自然科学基金国际(地区)合作与交流项目(52161135101);江苏省重点研发计划(BE2020023)资助项目。

摘  要:在多源耦合强噪声干扰下,滚动轴承的早期故障特征信号往往很难进行快速而又准确地提取。针对现有研究中存在的抗噪能力较弱、计算效率较低等问题,一种基于仿真驱动的Ramanujan周期变换的滚动轴承早期故障特征提取方法被提出。首先,基于待分析滚动轴承的先验知识,构建故障仿真动力学模型并获得仿真的稳态响应。其次,将该仿真信号作Ramanujan周期变换得到变换系数,并基于该变换系数获得故障特征信息的变换位置。最后,基于仿真响应信号所得到的故障特征信息变换位置,对实际监测信号进行Ramanujan周期变换来分离出早期故障特征。采用IMS轴承数据集对所提出的方法进行了验证,结果表明所提出的方法能够在强背景噪声下高效且准确地提取滚动轴承的早期故障特征。Under the multi-source coupling strong noise interference,it is often difficult to extract the early fault characteristic signals of rolling bearings quickly and accurately.Aiming at the problems of weak anti-noise ability and low computational efficiency in existing research,this paper proposes a method for extracting early fault features of rolling bearings based on simulation-driven Ramanujan period transform.First,based on the prior knowledge of the rolling bearing to be analyzed,a dynamic model of the fault simulation is constructed and the steady-state response of the simulation is obtained.Secondly,the simulation signal is transformed by Ramanujan period to obtain transform coefficients,and the transform position of fault feature information is obtained based on the transform coefficients.Finally,based on the fault feature information obtained from the simulated response signal,the position is transformed,and the Ramanujan period transformation is performed on the actual monitoring signal to separate the early fault features.The proposed method is validated with the IMS bearing dataset,and the results show that the proposed method can efficiently and accurately extract the early fault features of rolling bearings under strong background noise.

关 键 词:滚动轴承 仿真模型 Ramanujan周期变换 早期故障特征提取 

分 类 号:TG156[金属学及工艺—热处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象