An online automatic sorting system for defective Ginseng Radix et Rhizoma Rubra using deep learning  

在线阅读下载全文

作  者:Qilong Xue Peiqi Miao Kunhong Miao Yang Yu Zheng Li 

机构地区:[1]College of Pharmaceutical Engineering of Traditional Chinese Medicine,Tianjin University of Traditional Chinese Medicine,Tianjin 301617 China [2]State Key Laboratory of Component Traditional Chinese Medicine,Tianjin 301617,China [3]Tianjin Modern Innovative TCM Technology Co.,Ltd.,Tianjin 300380,China

出  处:《Chinese Herbal Medicines》2023年第3期447-456,共10页中草药(英文版)

基  金:funded by National Natural Science Foundation of China(Grant No.82074276);Projects of International Cooperation of Traditional Chinese Medicine(Grant No.06102040NF020928);National S&T Major Project of China(Grant No.2018ZX09201011);Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine.(No.ZYYCXTD-D-202002)。

摘  要:Objective:To establish a deep-learning architecture based on faster region-based convolutional neural networks(Faster R-CNN)algorithm for detection and sorting of red ginseng(Ginseng Radix et Rhizoma Rubra)with internal defects automatically on an online X-ray machine vision system.Methods:A Faster R-CNN based classifier was trained with around 20000 samples with mean average precision value(mAP)of 0.95.A traditional image processing method based on feedforward neural network(FNN)obtained a bad performance with the accuracy,recall and specificity of 69.0%,68.0%,and70.0%,respectively.Therefore,the Faster R-CNN model was saved to evaluate the model performance on the defective red ginseng online sorting system.Results:An independent set of 2000 red ginsengs were used to validate the performance of the Faster RCNN based online sorting system in three parallel tests,achieving accuracy of 95.8%,95.2%and 96.2%,respectively.Conclusion:The overall results indicated that the proposed Faster R-CNN based classification model has great potential for non-destructive detection of red ginseng with internal defects.

关 键 词:deep learning machine learning non-destructive detection red ginseng(Ginseng Radix et Rhizoma Rubra) X-RAY 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] S226.5[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象