检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:柏正尧[1] 许祝 张奕涵 BAI Zhengyao;XU Zhu;ZHANG Yihan(School of Information Science and Engineering,Yunnan University,Kunming 650500,China)
机构地区:[1]云南大学信息学院,昆明650500
出 处:《计算机科学》2023年第9期210-219,共10页Computer Science
基 金:云南省重大科技专项课题(202002AD080001);云南大学专业学位研究生实践创新基金(2021Y168)。
摘 要:针对三维重建过程中点云配准存在的挑战性问题(如寻找对应点困难等)展开研究,充分利用源点云和目标点云的几何信息,提出了一种基于交叉注意力和伪对应点生成机制的点云配准方法——深度伪对应点生成(DeepACG)。该方法采用三级网络模型,第一级是深度特征编码模块,利用交叉注意力机制交换和增强两片待配准点云之间的上下文和结构信息;第二级是伪对应点生成模块,基于软映射关系加权合成伪对应点;第三级为对应点加权和离群点过滤模块,赋予每个对应点对不同的权重值并剔除概率较低的离群点。在合成和真实数据集上进行大量实验,DeepACG方法在室内真实数据集3DMatch上的配准召回率达到92.61%;在数据集ModelNet40上进行目标未知的局部点云配准实验,旋转矩阵和平移向量的均方根误差分别降至0.016和0.00009。实验结果表明,DeepACG配准精度高,鲁棒性强,配准误差低于当前主流的配准方法。To address the challenging problems of point cloud registration in 3D reconstruction(e.g.,difficulty in finding corresponding points,etc.),this paper proposes a point cloud registration method based on cross-attention and artificial correspondence generation mechanism,Deep Artificial Correspondence Generation(DeepACG),by fully utilizing the geometric information of the source and target point clouds.Our method adopts a three-stage network model.The first stage is the deep feature encoding module,which exchanges and enhances the contextual and structural information between two unaligned point clouds using the cross-attention mechanism.The second stage is the artificial correspondence generation module,which synthesizes the artificial correspondences by weighting the soft mapping.The third one is the correspondence weighting and outlier filtering module,which assigns different weights to the correspondence pairs and rejects them with a small probability.Extensive experiments are conducted on both synthetic and real-world datasets.Our method achieves a registration recall of 92.61%on the real-world indoor dataset 3DMatch,and we execute unseen partial registration experiments on ModelNet40,reducing the root mean square error of the rotation matrix and translation vector to 0.016 and 0.00009,respectively.Experimental results show that DeepACG has higher registration accuracy and robustness,and its alignment error is lower than that of the existing mainstream registration approaches.
关 键 词:交叉注意力 伪对应点生成 离群点过滤 三维点云配准
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173