检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Kai-Hua Zhang Ying Jiang Liang-Shun Zhang
机构地区:[1]School of Chemistry,Center of Soft Matter Physics and Its Applications,Beihang University,Beijing,100191,China [2]Shanghai Key Laboratory of Advanced Polymeric Materials,School of Materials Science and Engineering,East China University of Science and Technology,Shanghai,200237,China
出 处:《Chinese Journal of Polymer Science》2023年第9期1377-1385,I0006,共10页高分子科学(英文版)
基 金:financially supported by the National Natural Science Foundation of China(Nos.22073028,21873029 and 22073004);the Fundamental Research Funds for the Central Universities。
摘 要:Dynamic self-consistent field theory(DSCFT)is a fruitful approach for modeling the structural evolution and collective kinetics for a wide variety of multicomponent polymers.However,solving a set of DSCFT equations remains daunting because of high computational demand.Herein,a machine learning method,integrating low-dimensional representations of microstructures and long short-term memory neural networks,is used to accelerate the predictions of structural evolution of multicomponent polymers.It is definitively demonstrated that the neural-network-trained surrogate model has the capability to accurately forecast the structural evolution of homopolymer blends as well as diblock copolymers,without the requirement of“on-the-fly”solution of DSCFT equations.Importantly,the data-driven method can also infer the latent growth laws of phase-separated microstructures of multicomponent polymers through simply using a few of time sequences from their past,without the prior knowledge of the governing dynamics.Our study exemplifies how the machine-learning-accelerated method can be applied to understand and discover the physics of structural evolution in the complex polymer systems.
关 键 词:Machine learning Dynamic self-consistent field theory Structural evolution Block copolymers Homopolymer blends
分 类 号:TQ317[化学工程—高聚物工业] TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40