检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:来燃 孙刚 张威 章涛[1] LAI Ran;SUN Gang;ZHANG Wei;ZHANG Tao(Tianjin Key Laboratory for Advanced Signal Processing,Civil Aviation University of China,Tianjin 300300,China)
机构地区:[1]中国民航大学天津市智能信号与图像处理重点实验室,天津300300
出 处:《系统工程与电子技术》2023年第9期2761-2767,共7页Systems Engineering and Electronics
基 金:国家重点研发计划(2022YFB3904303);天津市教委科研计划(2021KJ048)资助课题。
摘 要:针对参数稀疏恢复空时自适应处理中的动目标参数估计存在字典失配的问题,提出一种非凸松弛原子范数空时动目标参数估计算法。该方法利用目标回波在角度-多普勒域的稀疏特性,根据连续压缩感知和低秩矩阵恢复理论实现了运动目标方位角和速度的高精度、超分辨率估计,避免了稀疏恢复中的字典失配问题,有效提高了动目标参数估计性能。仿真实验结果表明,相较于已有基于字典网格的稀疏恢复参数估计方法和原子范数估计方法,所提算法具有更高的参数估计精度和对空间紧邻目标的分辨能力。The performance of the sparse recovery-based parameter estimation methods for moving target in space-time adaptive processing(STAP)degrades significantly in the case of dictionary mismatch.A space-time moving target parameter estimation based on non-convex relaxation of atomic norm is proposed.According to continuous compressed sensing and low rank matrix recovery theorems,the estimation of azimuth and velocity for moving target are obtained with high accuracy and super resolution,which utilizes the intrinsically sparse characteristic of moving target echo in the angle-Doppler domain.The proposed method can avoid the dictionary mismatch problem in the sparse recovery,and improves the performance of parameter estimation effectively.Numerical results show that compared with the existing grid-based approaches and atomic norm minimization approach,this approach has higher estimation accuracy and allows closely spaced targets to be more easily distinguished.
关 键 词:空时自适应处理 动目标参数估计 稀疏恢复 字典失配 非凸原子范数
分 类 号:TN959.73[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.207