检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:柏纪伸 钱堃[1,2] 徐欣 BAI Jishen;QIAN Kun;XU Xin(School of Automation,Southeast University,Nanjing 210096,China;Key Laboratory of Measurement and Control of Complex Systems of Engineering,Ministry of Education,Nanjing 210096,China)
机构地区:[1]东南大学自动化学院,江苏南京210096 [2]复杂工程系统测量与控制教育部重点实验室,江苏南京210096
出 处:《机器人》2023年第4期409-421,共13页Robot
基 金:之江实验室开放课题(2022NB0AB02);江苏省自然科学基金(BK20201264);国家自然科学基金(61573101)
摘 要:针对人机交递任务中的机器人轨迹再现与泛化问题,提出一种基于多级核化运动基元的人机联合轨迹单例模仿学习算法。通过将一个空间子区域中学习到的人手与机械臂末端位置之间的非线性关系迁移至其他子区域,实现人机交递技能对整体交互工作空间的覆盖;对机械臂末端动作轨迹长度进行建模与调制,使得算法能在轨迹重现过程中适应机械臂末端轨迹的长度变化。在UR5机器人上的实验表明,相较于传统核化运动基元算法,多级核化运动基元算法避免了对完整人手位置空间区域进行等密度采样,消除了在对某一子区域内人手位置进行推理时其他区域采样点的干扰,将推理平均误差由7.11:cm降低至1.85:cm,预测平均时间由0.138:s降低至0.015:s,提高了预测精度和实时性,针对具有尺度差异的人机联合轨迹样本,将交递成功率由13.3%提升至100%,提升了算法的学习与适应能力。Aiming at the problem of robot trajectories reproduction and generalization for human-robot handover tasks,a one-shot imitation learning method for human-robot joint trajectories is proposed based on multi-level kernelized movement primitives.By transferring the non-linear relationship between the positions of the human hand and the robot end-effector,which is learned in a spatial sub-region,to other sub-regions,the human-robot handover skills can cover the overall interaction workspace.By modeling and modulating the length of robot end-effector motion trajectories,the algorithm can adapt to the length variance of robot end-effector trajectory during trajectory reproduction.Experiments on a UR5 robot show that,compared with classical kernelized movement primitives algorithm,the proposed multi-level kernelized movement primitives algorithm avoids the uniform sampling of the complete human hand position space and eliminates the interference of sampling points from other sub-regions during inference procedure of hand position in a certain sub-region.Therefore,the average inference error is reduced from 7.11 cm to 1.85 cm,and the average inference time consumption is shortened from 0.138 s to 0.015 s,which achieves higher accuracy and better real-time performance.The proposed algorithm improves handover success rate from 13.3%to 100%on the hand-robot joint trajectories with significant scale variance,which outperforms classical kernelized movement primitives algorithm in the learning ability and adaptability.
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145