光致温度场光镊:原理及生物医学应用  被引量:7

Optical Temperature Field-Driven Tweezers:Principles and Biomedical Applications

在线阅读下载全文

作  者:钟义立 彭宇航 陈嘉杰 周健行 戴小祺 张晗[1] 屈军乐[1] 邵永红[1] Zhong Yili;Peng Yuhang;Chen Jiajie;Zhou Jianxing;Dai Xiaoqi;Zhang Han;Qu Junle;Shao Yonghong(College of Physics and Optoelectronic Engineering,Key Laboratory of Radio Frequency Heterogeneous Integration,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,Shenzhen University,Shenzhen 518060,Guangdong,China)

机构地区:[1]深圳大学物理与光电工程学院,射频异质异构集成全国重点研究实验室,光电子器件与系统教育部/广东省重点实验室,广东深圳518060

出  处:《光学学报》2023年第14期1-21,共21页Acta Optica Sinica

基  金:国家自然科学基金(62275164,61905145,62275168);国家重点研发计划(2022YFA1200116);广东省自然科学基金(2021A1515011916);广东省重大人才工程引进类项目(2021QN02Y124);深圳市科技计划项目(ZDSYS20210623092006020)。

摘  要:面向生物粒子操控方法的研究,在生物医学和生命科学等领域具有重要意义。光镊操控具有无接触与高精度的特点,已被广泛应用于多个领域的研究中。然而,传统光镊的光热效应以及衍射极限都制约着光镊在生物医学领域的更广泛应用和发展。近十年来,研究者们将光热效应化劣势为优势,利用光与热的耦合效应实现了多种粒子的精确捕获及操控,即光致温度场光镊(OTFT)。由于此种新型光镊对光能的利用率极高,能量密度低于传统光镊近3个数量级,并可实现颗粒的大范围操控,极大地拓展了光镊可操控粒子的种类,已经成为纳米技术以及生命科学领域的重要研究工具。温度场光镊仍面临诸多问题,例如对于颗粒界面调控的依赖性以及三维捕获受限等,尤其是在生物光子学的研究中,还需要进一步发展和优化。本文对光致温度场光镊操控基本原理及其在生物医学中的应用两个方面进行了系统阐述,并对其今后的发展与挑战进行了展望。Significance Optical tweezers have revolutionized the field of biological research with their unique advantages of noncontact and highprecision manipulation of various particles,including biomolecules.In 1986,Arthur Ashkin pioneered the development of optical tweezers by demonstrating their ability to capture microspheres in three dimensions,and his pioneering work had earned him a Nobel Prize in 2018.However,the optothermal effect and diffraction limit of lasers in traditional optical trapping techniques have restricted its wider applications.Nevertheless,in the past decade,researchers have turned the optothermal effect into a merit.With the synergy effect of optics and thermodynamics,one can perform highprecision nanoparticle manipulation in a largescale range,which is called optical temperature fielddriven tweezers(OTFT).This new type of tweezers can operate in rather low light density,which is two to three orders of magnitude lower than that of conventional optical tweezers.In addition,with the assistance of thermal energy,it greatly expands the categories of particles that can be manipulated,allowing for the largescale manipulation of particles that limit the application of optical tweezers,such as opaque particles,metallic nanoparticles,and biomolecules.OTFT has become a useful research tool that enables researchers to study biological particles with high precision.Particularly in the detection of individual bionanoparticles,such as viruses,bacteria,proteins,and DNAs.The ability to detect single bionanoparticles enables observation of biological behavior on an individual level,which allows us to develop effective disease prevention strategies and expand our understanding of the biological world.Progress In this review,we systematically demonstrate the manipulation principles of OTFT and its applications in the biological field.In addition,the future development and challenges of OTFT are also discussed.Firstly,we provide a brief analysis of conventional optical tweezers(Fig.1).Secondly,we demonstrate the ba

关 键 词:光镊 光热镊 光流控 光热效应 微流控 生物传感器 

分 类 号:O435[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象