Semiconductor Multilayer Nanometrology with Machine Learning  被引量:2

在线阅读下载全文

作  者:Hyunsoo Kwak Jungwon Kim 

机构地区:[1]Korea Advanced Institute of Science and Technology(KAIST),Daejeon 34141,South Korea

出  处:《Nanomanufacturing and Metrology》2023年第2期37-54,共18页纳米制造与计量(英文)

基  金:Funding National Research Foundation of Korea(Grants 2021R1A2B5B03001407 and 2021R1A5A1032937).

摘  要:We review the measurement methods and thickness characterization algorithms of semiconductor multilayer devices.Today’s ultrahigh-density,high-energy-efficient three-dimensional semiconductor devices require an iterative semiconductor layer-stacking process.Accurate determination of nanometer-scale layer thickness is crucial for reliable semiconductor device fabrication.In this paper,we first review the commonly used semiconductor multilayer thickness measurement methods,including destructive and nondestructive measurement methods.Next,we review two approaches for thickness characterization:model-based algorithms using a physical interpretation of multilayer structures and a method using data-driven machine learning.With the growing importance of semiconductor multilayer devices,we anticipate that this study will help in selecting the most appropriate method for multilayer thickness characterization.

关 键 词:Semiconductor multilayer devices Electron microscopy SPECTROPHOTOMETRY Spectroscopic ellipsometry Raman spectroscopy Thickness characterization Machine learning 

分 类 号:TB383.1[一般工业技术—材料科学与工程] TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象