检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘雪锋 李京忠[2] Liu Xuefeng;Li Jingzhong(Xuchang Digital Learning Engineering Technology Research Center,Xuchang 461000,Henan,China;School of City and Environment,Xuchang University,Xuchang 461000,Henan,China)
机构地区:[1]许昌市数字化学习工程技术研究中心,河南许昌461000 [2]许昌学院城市与环境学院,河南许昌461000
出 处:《计算机应用与软件》2023年第8期312-320,共9页Computer Applications and Software
基 金:河南省青年人才托举工程和许昌学院科研项目(2020HYTP012)。
摘 要:针对目前无监督域自适应方法对噪声和域偏移非常敏感,提出一种基于深度条件适应网络的标签转移算法。利用Wasserstein距离来度量区域分布差异,有效解决了当邻域差异较大时梯度消失问题,从而获得更好的域适应性能。提出一种条件适应策略,以减少域分布差异,解决边缘适应方法中经常忽略的类别不匹配和类别先验偏差。进一步引入一种标签相关传递算法预测伪目标标签,提升算法的准确性和实用性。对标准领域应用基准进行全面的实验,实验结果表明,该算法能够有效提升对噪声和域偏移的鲁棒性,进一步强化了算法的自适应性能。Aimed at the problem that the current unsupervised domain adaptive method is very sensitive to noise and domain offset,a label transfer algorithm based on depth condition adaptive network is proposed.Wasserstein distance was used to measure the regional distribution difference,which effectively solved the problem of gradient disappearing when the neighborhood difference was large,so as to obtain better domain adaptability.A conditional adaptation strategy was proposed to reduce the difference of domain distribution and solve the class mismatch and class prior bias which were often ignored in edge adaptation methods.Furthermore,a label correlation transfer algorithm was introduced to predict pseudo target tags,which improved the accuracy and practicability of the algorithm.A comprehensive experiment was carried out on the application benchmark in the standard field.The experimental results show that the proposed algorithm can effectively improve the robustness to noise and domain offset,and further enhance the adaptive performance of the algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222