检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡涛[1] 王飞[1] 马跃明 牛德姣[1] 李雷[1] CAI Tao;WANG Fei;MA Yue-ming;NIU De-jiao;LI Lei(School of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang 212013,China)
机构地区:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013
出 处:《小型微型计算机系统》2023年第9期1898-1905,共8页Journal of Chinese Computer Systems
基 金:科技部国家重点研发计划项目(2018YFB0804204)资助.
摘 要:DNN训练中需要反复频繁读写海量参数,NVM具有读写速度快的优势,是提高DNN训练效率的有效手段.但现有的NVM文件系统为了应对上层多种复杂的应用普遍使用基于文件的锁机制,难以利用多核并发读写提高DNN训练中对海量参数的I/O效率.本文针对DNN训练时的特性和NVM中存在的I/O软件栈的挑战,设计了基于并发线程的细粒度锁和基于两层日志的文件并发I/O机制,并实现了面向DNN高并发NVM文件系统的原型DNNFS,使用Filebench和Fio在多种不同类型负载下进行了测试,实验结果表明DNNFS相比NOVA最大能提高35.8%的IOPS值和21.6%的I/O带宽.The massive parameters are needed to read and write repeatedly and frequently during the training of DNN.NVM has high read and writing speed and is an effective means to improve the parameter accessing efficiency of DNN training.However,the existing NVM file system generally uses the file-based locking mechanism to cope with the complicate read and write request for upper-layer applications of the operating system,and it becomes the bottleneck of massive parameters accessing in DNN training by using multiple concurrent read and write threads.This paper aims at the characteristics of DNN training and the challenges of the I/O software stack in NVM,the fine-grained locking strategy based on concurrent threads and the concurrent I/O mechanism based on two-layer logs were designed and implemented the prototype of DNN-oriented high-concurrent NVM file system named DNNFS was implemented based on NOVA.Filebench and Fio were used to test under several types of workloads.The results show that DNNFS can improve IOPS by up to 35.8%and I/O bandwidth by 21.6%compared to NOVA.
分 类 号:TP316[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63