检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴彦文 马艺璇[2] 葛迪 邓云泽 WU Yan-wen;MA Yi-xuan;GE Di;DENG Yun-ze(National Engineering Research Center for E-Learning,Central China Normal University,Wuhan 430079,China;Department of Physical Science and Technology,Central China Normal University,Wuhan 430079,China)
机构地区:[1]华中师范大学国家数字化学习工程技术研究中心,武汉430079 [2]华中师范大学物理科学与技术学院,武汉430079
出 处:《小型微型计算机系统》2023年第9期1912-1917,共6页Journal of Chinese Computer Systems
基 金:国家自然科学基金重点项目(61937001)资助;教育部国家级新工科研究与实践项目2020年新工科专业改革类项目(E-RGZN20201032)资助;教育部高等学校电子信息类专业教学指导委员会2020年教学改革研究项目(2020-YB-30)资助;教育部高教司产学合作协同育人项目(202101316003)资助;湖北省2020年省级教学研究项目(2020139)资助.
摘 要:基于图神经网络的社会化推荐是现有模型中性能较好的一类方法,通过挖掘图结构信息缓解数据稀疏问题.然而现有大多数模型仅考虑浅层的语义上下文信息,导致模型难以学习到高质量的用户/项目向量.为此,本文提出了一种融合语义增强的用户兴趣度预测方法.该模型通过学习用户-项目二部图中的语义关系构建语义增强的用户/物品网络,将其与社交网络送入关系感知图神经网络中进行深层上下文信息的聚合,利用多层感知机对生成的用户兴趣和物品嵌入进行拼接,最终预测用户和物品的交互得分.对Ciao和Epinions两个公开数据集进行仿真实验,实验结果显示,模型在Recall@K(召回率)和NDCG@K(归一化折损累计增益)两个方面相较于最优基线平均提升了3.55%和2.21%,从而验证在进行语义增强和上下文感知聚合后,算法的有效性得到了提升.Social recommendation based on graph neural network are methods with better performance in existing models.It can alleviate the problem of data sparseness by mining graph structure information.However,most existing models only consider shallow semantic context information,which makes GNN difficult to learn high-quality user/item embedding representations.For this reason,this paper proposes a method for predicting user interest combined with semantic enhancement.The model builds a semantically enhanced user network and item network by learning the semantic relationship in the user-item bipartite graph,then sends them and the social network to the connection-aware graph neural network for the perception and aggregation of deep context information.The perception splices the generated user interest and item attribute embedding representations,and finally predict the interaction probability between the target user and the candidate item.A series of simulation experiments were performed on two public datasets of Ciao and Epinions.The experimental results showed that the model has an average improvement of 3.55%and 2.21%in Recall@K and NDCG@K(Normalized discounted cumulative gain)compared to the optimal baseline.It verifies that the effectiveness of the algorithm has been improved after semantic enhancement and context-aware aggregation.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.136.109