检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕帅君 邢燕[1] 洪沛霖 LYU Shuaijun;XING Yan;HONG Peilin(School of Mathematics,Hefei University of Technology,Hefei 230601,China;School of Medical Information Engineering,Anhui University of Chinese Medicine,Hefei 230012,China)
机构地区:[1]合肥工业大学数学学院,安徽合肥230601 [2]安徽中医药大学医药信息工程学院,安徽合肥230012
出 处:《合肥工业大学学报(自然科学版)》2023年第8期1142-1145,1152,共5页Journal of Hefei University of Technology:Natural Science
基 金:国家自然科学基金资助项目(11601115);中央高校基本科研业务费专项资金资助项目(PA2020GDSK0060)。
摘 要:深度学习在网格分类中的应用越来越受到人们的关注,在网格分类任务中,通常使用交叉熵损失作为损失函数。文章提出一种利用数据的结构相似性和几何一致性的正则化损失,将其加入损失函数中进行优化,可有效提高网格的分类准确率。从实验结果的量化指标来看,提出的正则化损失对于网格半监督分类任务的准确率有很好的提升效果。The application of deep learning in mesh classification has attracted increasing attention.In mesh classification tasks,cross entropy loss is usually used as a loss function.In this paper,a regularization loss based on the structure similarity and geometric consistency of data is proposed,which can be directly added to the loss function to improve the classification accuracy of mesh.According to the final quantitative index of experimental results,the proposed regularization loss has a good effect on improving the accuracy of semi-supervised mesh classification task.
分 类 号:TP391.411[自动化与计算机技术—计算机应用技术] TP181[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3