Research on the bi-layer low carbon optimization strategy of integrated energy system based on Stackelberg master slave game  被引量:2

在线阅读下载全文

作  者:Lizhen Wu Cuicui Wang Wei Chen Tingting Pei 

机构地区:[1]College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou,Gansu,730050,P.R.China [2]School of Electrical and Data Engineering,(University of Technology Sydney),NSW,Australia

出  处:《Global Energy Interconnection》2023年第4期389-402,共14页全球能源互联网(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.62063016)。

摘  要:With increasing reforms related to integrated energy systems(IESs),each energy subsystem,as a participant based on bounded rationality,significantly influences the optimal scheduling of the entire IES through mutual learning and imitation.A reasonable multiagent joint operation strategy can help this system meet its low-carbon objectives.This paper proposes a bilayer low-carbon optimal operational strategy for an IES based on the Stackelberg master-slave game and multiagent joint operation.The studied IES includes cogeneration,power-to-gas,and carbon capture systems.Based on the Stackelberg master-slave game theory,sellers are used as leaders in the upper layer to set the prices of electricity and heat,while energy producers,energy storage providers,and load aggregators are used as followers in the lower layer to adjust the operational strategy of the system.An IES bilayer optimization model based on the Stackelberg master-slave game was developed.Finally,the Karush-Kuhn-Tucker(KKT)condition and linear relaxation technology are used to convert the bilayer game model to a single layer.CPLEX,which is a mathematical program solver,is used to solve the equilibrium problem and the carbon emission trading cost of the system when the benefits of each subject reach maximum and to analyze the impact of different carbon emission trading prices and growth rates on the operational strategy of the system.As an experimental demonstration,we simulated an IES coupled with an IEEE 39-node electrical grid system,a six-node heat network system,and a six-node gas network system.The simulation results confirm the effectiveness and feasibility of the proposed model.

关 键 词:Integrated energy system Stackelberg master-slave game Power-to-gas system Carbon capture systems 

分 类 号:TM73[电气工程—电力系统及自动化] TK01[动力工程及工程热物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象