Construction and application of knowledge graph for grid dispatch fault handling based on pre-trained model  被引量:1

在线阅读下载全文

作  者:Zhixiang Ji Xiaohui Wang Jie Zhang Di Wu 

机构地区:[1]China Electric Power Research Institute Co.,Ltd,Haidian District,Beijing 100192,P.R.China [2]Sichuan Electric Power Research Institute SGCC,Chengdu 610041,P.R.China

出  处:《Global Energy Interconnection》2023年第4期493-504,共12页全球能源互联网(英文版)

基  金:supported by the Science and Technology Project of the State Grid Corporation“Research on Key Technologies of Power Artificial Intelligence Open Platform”(5700-202155260A-0-0-00).

摘  要:With the construction of new power systems,the power grid has become extremely large,with an increasing proportion of new energy and AC/DC hybrid connections.The dynamic characteristics and fault patterns of the power grid are complex;additionally,power grid control is difficult,operation risks are high,and the task of fault handling is arduous.Traditional power-grid fault handling relies primarily on human experience.The difference in and lack of knowledge reserve of control personnel restrict the accuracy and timeliness of fault handling.Therefore,this mode of operation is no longer suitable for the requirements of new systems.Based on the multi-source heterogeneous data of power grid dispatch,this paper proposes a joint entity–relationship extraction method for power-grid dispatch fault processing based on a pre-trained model,constructs a knowledge graph of power-grid dispatch fault processing and designs,and develops a fault-processing auxiliary decision-making system based on the knowledge graph.It was applied to study a provincial dispatch control center,and it effectively improved the accident processing ability and intelligent level of accident management and control of the power grid.

关 键 词:Power-grid dispatch fault handling Knowledge graph Pre-trained model Auxiliary decision-making 

分 类 号:TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象