检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chen Gao Liqun Zhang
机构地区:[1]Institute of Mathematics,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China [2]School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China [3]Hua Loo-Keng Key Laboratory of Mathematics,Chinese Academy of Sciences,Beijing 100190,China
出 处:《Science China Mathematics》2023年第9期1993-2020,共28页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos. 11471320 and 11631008)。
摘 要:In this paper,we consider the zero-viscosity limit of the 2D steady Navier-Stokes equations in(0,L)×R+with no-slip boundary conditions.By estimating the stream-function of the remainder,we justify the validity of the Prandtl boundary layer expansions.Specially,we show the global stability under the concavity condition of the Prandtl profile for an arbitrarily large constant L when the Euler flow is shear.
关 键 词:Navier-Stokes equations Prandtl boundary layer zero-viscosity limit stream-function estimates of theremainder
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200