检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yi Liu
机构地区:[1]Beijing International Center for Mathematical Research,Peking University,Beijing 100871,China
出 处:《Science China Mathematics》2023年第9期2119-2132,共14页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant No.11925101);National Key R&D Program of China(Grant No.2020YFA0712800)。
摘 要:For any pseudo-Anosov automorphism on an orientable closed surface,an inequality is established by bounding certain growth of virtual homological eigenvalues with the Weil-Petersson translation length.The new inequality fits nicely with other known inequalities due to Kojima and McShane(2018)and Lê(2014).The new quantity to be considered is the square sum of the logarithmic radii of the homological eigenvalues(with multiplicity)outside the complex unit circle,called the homological Jensen square sum.The main theorem is as follows.For any cofinal sequence of regular finite covers of a given surface,together with lifts of a given pseudo-Anosov,the homological Jensen square sum of the lifts grows at most linearly fast compared with the covering degree,and the square root of the growth rate is at most 1/√4πtimes the Weil-Petersson translation length of the given pseudo-Anosov.
关 键 词:homological eigenvalue finite cover Weil-Petersson metric translation length
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49