检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱雅魁 赵莎莎 李争[2] ZHU Yakui;ZHAO Shasha;LI Zheng(Marketing Service Center,State Grid Hebei Electric Power Co.,Ltd.,Shijiazhuang 050000,China;Hebei University of Science and Technology,Shijiazhuang 050000,China)
机构地区:[1]国网河北省电力有限公司营销服务中心,河北石家庄050000 [2]河北科技大学,河北石家庄050000
出 处:《中国测试》2023年第8期28-35,66,共9页China Measurement & Test
基 金:国网河北营销中心市场开发室2020年“网上国网”线上线下全渠道融合建设费用(B704YF200028)。
摘 要:针对复杂电能质量扰动信号非平稳性和非线性导致的信号特征难以直接提取和识别的问题,该文提出一种基于自适应遗传算法优化(adaptive genetic algorithm,AGA)的栈式稀疏自编码器(stacked sparse autoencoder,SSAE)和对称点模式(symmetrized dot pattern,SDP)域转换的暂态电能质量扰动识别方法。首先,通过Matlab仿真随机生成6种单一扰动信号和9种复合扰动信号,通过SDP方法将原始时域扰动信号转换至极坐标域,实现扰动信号可视化并生成对应的扰动图谱,对扰动图谱进行参数优化;然后,基于Tensorflow开源框架搭建SSAE识别模型,并由AGA算法完成模型结构及其参数的优化,实现扰动图谱的深度特征提取与挖掘;最后,由末端分类器进行无监督学习分类,比较常见扰动识别方法的优劣。结果表明:该文提出的基于AGA-SSAE和SDP域转换的暂态电能质量扰动识别方法能够对暂态扰动进行高效、准确的识别分类,平均测试准确率为97.89%,优于传统方法10%左右;同时所提方法的架构清晰,且具有较好的收敛性和泛化能力,适用于电力系统电能质量暂态扰动的快速、精确识别。The non-stationary and non-linear characteristics of complex power quality disturbance signal make it difficult to extract and identify the signal features directly.In this paper,a transient power quality disturbance identification method based on stack sparse autoencoder(SSAE)and symmetric dot pattern(SDP)domain conversion of adaptive genetic algorithm(AGA)is proposed,Six kinds of single disturbance signals and nine kinds of compound disturbance signals are randomly generated by Matlab simulation.The original disturbance signals in time domain are transformed into polar coordinate domain by SDP method to realize the visualization of disturbance signals and generate corresponding disturbance maps,and the parameters of disturbance maps are optimized.Then,the SSAE recognition model is built based on tensorflow open-source framework,and the AGA algorithm is used to optimize the model structure and its parameters to realize the depth feature extraction and mining of disturbance spectrum.Finally,unsupervised learning classification is carried out by the end classifier,and the advantages and disadvantages of common disturbance recognition methods are compared.The results show that the proposed transient power quality disturbance identification method based on AGA-SSAE and SDP domain transformation can identify and classify the transient disturbances efficiently and accurately,and the average test accuracy is 97.89%,which is about 10%better than the traditional method.At the same time,the proposed method has clear architecture,good convergence and generalization ability,and is suitable for fast and accurate identification of power quality transient disturbances.
分 类 号:TM930[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.68.176