检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:翟志波 贾国平 王涛 周鹏鹏 闫汝山 戴玉森 ZHAI Zhibo;JIA Guoping;WANG Tao;ZHOU Pengpeng;YAN Rushan;DAI Yusen(College of Mechanical and Equipment Engineering,Hebei University of Engineering,Handan 056038,China)
机构地区:[1]河北工程大学机械与装备工程学院,河北邯郸056038
出 处:《计算机集成制造系统》2023年第8期2611-2621,共11页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金资助项目(52001105);河北省高等学校科学技术研究资助项目(ZD2021024);邯郸市科技局资助项目(21422301290);河北省教育厅在读研究生创新能力培养资助项目(CXZZSS2022024)。
摘 要:教与学优化算法(TLBO)是一种进化能力非常强大的算法,近年被广泛应用于各种优化问题。但是,在TLBO算法进化的后期,随着进化迭代次数的增加和求解范围的缩小,种群的多样性逐渐降低,从而导致陷入局部最优和过早收敛。基于此,提出一种基于拉普拉斯分布和鲍德温学习效应的教与学优化算法(LBTLBO)。该算法利用拉普拉斯分布的扰动来拓展探索空间,采用鲍德温学习效应识别出更多有前途的解,使算法更具有竞争性。实验结果表明,与原始TLBO、基于拉普拉斯分布的TLBO、基于鲍德温学习的TLBO以及改进版本的TLBO进行比较,LBTLBO提高了解的精度,具有很强的竞争力。最后,将LBTLBO应用于无人机航路规划问题,并进行了仿真实验,结果显示,与上述改进版本的TLBO相比,LBTLBO能获得更加准确的路径与收敛速度。Teaching-Learning-Based Optimization(TLBO)algorithm is a powerful evolutionary algorithm that has recently been widely applied in a variety of optimization problems.However,in the later period of evolution of the TLBO algorithm,the diversity of learners will be degraded with the increasing iteration of evolution and the smaller scope of solutions,which leads to trap in local optima and premature convergence.For this reason,an improved version of TLBO algorithm based on Laplace distribution and Balwin learning effect(LBTLBO)was presented.Laplace distribution was used to expand exploration space,and the Balwin learning effect was applied to make good use of experience information to identify more promising solutions to make the algorithm more competitive.The experimental performances verified that LBTLBO algorithm enhanced the solution accuracy and quality compared to original TLBO,TLBO algorithm based on Laplace distribution(LTLBO),TLBO algorithm based on Balwin learning effect(BTLBO)as well as various versions of TLBO.LBTLBO was used to solve Unmanned Aerial Vehicle(UVA)path planning problem.The simulation experiments showed that the improved algorithm could get more accurate path and convergence rate in the UVA path planning problem.
关 键 词:教与学优化算法 拉普拉斯分布 鲍德温学习效应 无人机航路规划
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49