检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周彬 花豹 陆玉前 李心雨 李婕 鲍劲松 ZHOU Bin;HUA Bao;LU Yuqian;LI Xinyu;LI Jie;BAO Jinsong(Institute of Intelligent Manufacturing,College of Mechanical Engineering,Donghua University,Shanghai 201620,China;Department of Mechanical Engineering,The University of Auckland,Auckland 1142,New Zealand)
机构地区:[1]东华大学机械工程学院智能制造研究所,上海201620 [2]奥克兰大学机械工程系,新西兰奥克兰1142
出 处:《计算机集成制造系统》2023年第8期2708-2721,共14页Computer Integrated Manufacturing Systems
基 金:国家重点研发计划资助项目(2019YFB1706300);上海市自然科学基金面上资助项目(21ZR1400800);上海市科学技术委员会“科技创新行动计划”启明星计划扬帆专项资助项目(22YF1400200);中央高校基本科研业务费专项资金资助项目(CUSF-DH-D-2021043)。
摘 要:设备点检记录是支撑故障原因分析与处理的重要信息来源,目前亟需对设备点检故障中的根因信息进行有效挖掘,以提升设备预防性维护的可靠性。鉴于此,首次将因果科学论引入制造领域,提出一种面向设备点检故障根因分析的因果知识建模方法。首先,从设备点检故障文档中提取事件知识,构建故障运维因果知识图谱;其次,定义故障运维因果知识规则,形成结构因果图模型;进而,设计一种基于ISPN的因果效应估计学习模型,对故障知识中混杂影响因素进行估计计算,挖掘出影响设备故障发生的语义关系,补全图谱节点间隐含的因果性语义链路;最后,以冶金设备点检故障文档的知识测试了所提方法,验证了因果知识模型估计设备故障根因知识间因果效应的可行性。Equipment spot-inspection records are essential information sources supporting fault reason analysis.However,there is a lack of effective mining of root cause information in equipment spot-inspection failures to improve the reliability of preventive equipment maintenance.Therefore,the causal theory was introduced into the manufacturing field for the first time to propose a causal knowledge modeling for root cause analysis of equipment spot-inspection failure.The event knowledge was extracted from the equipment spot-inspection fault documents to construct a fault operation and maintenance causal knowledge graph.The fault operation and maintenance causal knowledge rules were defined to establish a structural causal graph model.Then,an Intervention Sum Product Networks(ISPN)-based causal effect estimation learning model was designed to calculate the confounding influences in the fault knowledge and determine the main factors affecting equipment failures.Moreover,the implicit causal semantic links between nodes were complemented.The proposed method was tested with knowledge of metallurgical equipment spot inspection failure documentation.The feasibility of the causal knowledge model in estimating the causal effect among knowledge of the root causes for equipment failures was verified.
关 键 词:工业知识图谱 因果知识建模 设备点检故障 根因分析
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222