基于吴语和普通话混合的无差别语音识别  

Undifferentiated speech recognition based on the mixture of Wu and Mandarin

在线阅读下载全文

作  者:孟青云 徐滨 沈宏涛 魏明霞 孟巧玲[2] Meng Qingyun;Xu Bin;Shen Hongtao;Wei Mingxia;Meng Qiaoling(School of Medical Instrument,Shanghai University of Medicine&Health Sciences,Shanghai 201318,China;School of Health Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;School of Automation,Hangzhou University of Electronic Science and Technology,Hangzhou 310018,China)

机构地区:[1]上海健康医学院医疗器械学院,上海201318 [2]上海理工大学健康科学与工程学院,上海200093 [3]杭州电子科技大学自动化学院,杭州310018

出  处:《现代仪器与医疗》2023年第3期18-24,共7页Modern Instruments & Medical Treatment

基  金:上海市2020年度“科技创新行动计划”生物医药科技支撑专项项目(20S31905400)。

摘  要:针对使用方言的人数多,方言的识别效果较差问题,本文以上肢康复外骨骼的语音指令作为识别对象,使用Python的第三方库Keras和Librosa建立了一种DNN-HMM[深层神经网络(Deep Neural Network),隐马尔可夫模型(Hidden Markov Model)]模型,对吴语方言与普通话混合的语音样本进行无差别语音识别研究和实验。结果表明,本文研究的模型对于吴语方言与普通话混合的语音样本识别率能够达到81%,具有较高的识别精度;且对于单独的吴语方言识别率有65%左右。该研究结果可以进一步的应用于其他地区方言的语音识别,为智能康复外骨骼的控制研究和推广提供了理论和实验基础。In view of the large number of people use dialects and the poor recognition effect of dialects,the voice instructions of the upper limb rehabilitation exoskeleton are used as the recognition object in this paper,where a DNN-HMM(Deep Neural Network and Hidden Markov Model)model is established using the third-party library Keras and Librosa of Python to carry out an undifferentiated speech recognition experiment on the mixed voice samples of Wu dialect and Mandarin.The experimental results show that the recognition rate of the model can reach 81% for the mixed speech samples of Wu dialect and Putonghua,and it has a high recognition accuracy.The recognition rate of Wu language alone is about 65%.The research results can be further applied to speech recognition in other dialect areas,providing a theoretical and experimental basis for the control research and promotion of intelligent rehabilitation exoskeleton.

关 键 词:语音识别 吴语方言 语音控制信号 无差别 上肢外骨骼指令 PYTHON 

分 类 号:TP312[自动化与计算机技术—计算机软件与理论] TP399[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象