检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:施迎盈 张顺[1] SHI Ying-ying;ZHANG Shun(Department of Philosophy,Nanjing University,Nanjing 210023,China)
出 处:《湖南科技大学学报(社会科学版)》2023年第4期48-57,共10页Journal of Hunan University of Science and Technology(Social Science Edition)
基 金:国家社会科学基金青年项目(22CZX062);国家社会科学基金重大项目(18ZDA031)。
摘 要:普利斯特用弗封闭模式将若干集合论悖论和语义悖论统一为“同一种悖论”,进而根据统一解法原理论证其“双面真理论”的解悖优势。但他坚持将寇里悖论排除在弗封闭模式之外,引起了广泛争议。他在严格区分寇里语句与寇里论证的基础上回应了比尔等人的质疑,但将悖论的实质归于论证并不能成功区分寇里悖论与弗封闭悖论。回顾寇里本人的工作,寇里语句的构建是寇里悖论最终建构的关键要素,也是区分其集合论版本与语义版本的直接依据。因此与寇里语句紧密相关的理论背景与事实才是寇里悖论的实质所在,弗封闭模式依据论证形式统摄罗素悖论与说谎者悖论却排斥寇里悖论的做法是不恰当的,悖论的“属概念”是理论事实而非论证,悖论的分类应当以理论背景为标准。G.Priest unified several set theory paradoxes and semantic paradoxes into“the same paradox”by the Inclosure Schema,thus demonstrating the advantages of the dialetheism approach according to the Principle of Unified Solution.His insistence on excluding Curry's paradox from the Inclosure Schema caused widespread controversy.He responded to J.Beall and others on a strict distinction between the Curry sentence and the Curry argument,but attributing the essence of paradox to arguments could not distinguish Curry's paradox from the inclosure paradox.Looking back at Curry's own work,the construction of the Curry sentence is the key step in the final completion of Curry's paradox.It is also the direct basis for distinguishing its settheoretic version from its semantic version.Therefore,the theoretical background and facts closely related to the Curry sentence are the essence of Curry's paradox.It is inappropriate for the Inclosure Schema to unify Russell's paradox and liar paradox based on the argumentation form,but exclude Curry's paradox.The“genus concept”of paradox is theoretical fact rather than argumentation,and the classification of paradox should be based on the theoretical background.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.164.253