基于双频点载波相位的RFID室内定位算法  被引量:6

RFID indoor localization algorithm based on dual-frequency carrier phase

在线阅读下载全文

作  者:谢良波 夏晨晖 张钰坤 周牧 杨小龙 Xie Liangbo;Xia Chenhui;Zhang Yukun;Zhou Mu;Yang Xiaolong(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Engineering Research Center of Mobile Communications,Ministry of Education,Chongqing 400065,China)

机构地区:[1]重庆邮电大学通信与信息工程学院,重庆400065 [2]移动通信教育部工程研究中心,重庆400065

出  处:《仪器仪表学报》2023年第5期267-277,共11页Chinese Journal of Scientific Instrument

基  金:重庆市自然科学基金面上项目(CSTB2023NSCQ-MSXD249);重庆市九龙坡区科技计划项目(2022-02-005-Z)资助。

摘  要:针对传统射频识别(RFID)室内定位方法定位精度不高的问题,提出了一种基于双频点载波相位距离模型的RFID室内定位算法。采用跳频技术虚拟大带宽获取距离粗估计以实现多径抑制,并基于多径抑制完成最优双频点的选择;利用最优双频点载波相位设计粒子滤波定位算法,通过遗传算法优化传统粒子滤波中的重采样方法,有效解决了粒子退化问题并提升了定位精度。实验结果表明,所提算法的中位数定位误差为5.23 cm,定位性能比传统中国余数定理的定位方法提高了约39%。The localization accuracy of traditional radio frequency identification(RFID)indoor localization methods is low.To address this issue,a RFID indoor localization method based on dual-frequency carrier phase is proposed.Frequency hopping technology is employed to obtain rough range estimation with virtual large bandwidth to achieve multipath suppression.The selection of the optimal dual-frequency points is completed based on multipath suppression.The particle filter localization algorithm is designed by using the optimal dual-frequency point carrier phase.The resampling method in traditional particle filter is optimized by genetic algorithm,which effectively solves the problem of particle degradation and improves the localization accuracy.Experimental results show that the median localization error of the proposed algorithm is 5.23 cm,which achieves 39%improvement than the traditional localization method based on Chinese remainder theorem.

关 键 词:射频识别 室内定位 多径抑制 最优双频点 遗传粒子滤波 

分 类 号:TN99[电子电信—信号与信息处理] TH89[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象