基于拥塞及内存感知的SD-WAN故障恢复  

SD-WAN Failure Recovery Based on Congestion and Memory Awareness

在线阅读下载全文

作  者:庄捷 张奇支[1,2] 郑伟平 赵淦森[1,2] ZHUANG Jie;ZHANG Qi-Zhi;ZHENG Wei-Ping;ZHAO Gan-Sen(School of Computer Science,South China Normal University,Guangzhou 510631,China;Key Laboratory on Cloud Security and Assessment Technology of Guangzhou,Guangzhou 510631,China)

机构地区:[1]华南师范大学计算机学院,广州510631 [2]广州市云计算安全与测评技术重点实验室,广州510631

出  处:《计算机系统应用》2023年第9期106-114,共9页Computer Systems & Applications

基  金:国家重点研发计划(2019YFB1804003);广东省重点领域研发计划(2019B010137003);广东省科技基金(2016B030305006,2018A07071702);广州市科技基金(201804010314)。

摘  要:在软件定义广域网(SD-WAN)中,链路故障会导致大量丢包,严重时会引起部分网络瘫痪.现有的流量工程方法通过在数据平面提前安装备份路径能够加快故障恢复过程,但在资源受限的情况下难以适应各种网络故障情况,从而使恢复后的网络性能下降.为了保证网络在故障恢复之后的性能并减少备份资源的消耗,本文提出一种基于拥塞及内存感知的主动式故障恢复方案(CAMA),不仅能够将受影响数据流进行快速重定向,还能实现负载均衡避免恢复后潜在的链路拥塞.实验结果表明,与已有方案相比, CAMA能有效利用备份资源,在负载均衡上有较好的性能,且仅需少量备份规则即可覆盖所有单链路故障情况.In software-defined wide area networks(SD-WANs),link failures can result in substantial packet loss,leading to partial network paralysis in severe cases.The existing traffic engineering approaches can expedite failure recovery by installing backup paths in advance on the data plane.However,it is difficult to adapt to various network failures with limited resources,which degrades the network performance after recovery.To maintain the network performance after failure recovery and reduce the consumption of backup resources,this study proposes a proactive failure recovery scheme based on congestion and memory awareness(CAMA),which can not only redirect the affected data flows quickly but also realize the load balancing to avoid the potential link congestion after recovery.Experimental results demonstrate that compared with existing schemes,CAMA can effectively utilize backup resources,performs well in load balancing,and requires only a small number of backup rules to cover all single-link failure scenarios.

关 键 词:软件定义网络 软件定义广域网 故障恢复 负载均衡 备份资源 

分 类 号:TP393.0[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象