基于全特征融合的小径管焊接缺陷检测方法  

Welding defect detection method based on full feature fusion for small diameter pipes

在线阅读下载全文

作  者:石陆魁 石波 白佳鹏 牛卫飞[2] 杨丽[3] SHI Lukui;SHI Bo;BAI Jiapeng;NIU Weifei;YANG Li(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China;Tianjin Special Equipment Inspection Institute,Tianjin 300192,China;College of Electrical and Mechanical,Shijiazhuang University,Shijiazhuang 050035,China)

机构地区:[1]河北工业大学人工智能与数据科学学院,天津300401 [2]天津市特种设备监督检验技术研究院,天津300192 [3]石家庄学院机电学院,河北石家庄050035

出  处:《传感器与微系统》2023年第9期116-120,共5页Transducer and Microsystem Technologies

基  金:天津市重点研发计划资助项目(20YFZCGX00490);河北省自然科学基金资助项目(F2020202008)。

摘  要:针对小径管焊接X射线图像中缺陷尺寸差异大、大纵横比缺陷和回归位置偏移等问题,提出了基于全特征融合和多级检测头的检测模型,模型由全特征融合网络(FFF-Net)和基于距离交并比(IoU)散度(DI-KL)损失的多级检测头组成。FFF-Net通过双向特征均衡有效提取不同尺寸缺陷的特征,利用形状特征提取大纵横比缺陷的形状特征,并通过注意力机制提高特征的显著性;基于DI-KL损失的多级检测头将DI-KL损失作为回归损失,结合多级检测头缓解了预测框回归位置不准确的问题。实验结果表明:该模型有效提高了小径管焊接缺陷检测精度,特别是小尺寸和大纵横比缺陷的检测精度。Aiming at the problems that size of defects has large difference,large aspect ratio defects,and regression position offset in welding X-ray images of small diameter pipes,a detection model based on full feature fusion and multi-level detection head is proposed,which consists of full feature fusion network(FFF-Net)and multi-level detection head based on distance intersection over union(IoU)Kullback-Leibler divergence(DI-KL)loss.FFF-Net can effectively extract defects features of different sizes by two-way feature equalization.Shape feature can be used to extract the shape features of defects with large aspect ratios,the saliency of features can be improved by attention mechanism,the multi-level detection head based on DI-KL loss is taken as the regression loss,which alleviates inaccurate regression position of the prediction box combing with multi-level detection head.Experimental results show that the model effectively improves the detection precision,especially the detection precision of defects with small size and defects with large aspect ratio.

关 键 词:小径管 X射线图像 缺陷检测 全特征融合 DI-KL损失 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP212[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象