融合语义特征和知识特征的推荐模型  

Recommendation model combining semantic feature and knowledge feature

在线阅读下载全文

作  者:郑光[1,2] 朱越 时雷[1,2] 马新明[1,2] 席磊[1,2] ZHENG Guang;ZHU Yue;SHI Lei;MA Xin-ming;XI Lei(College of Information and Management Science,Henan Agricultural University,Zhengzhou 450046,China;Henan Engineering Laboratory for Farmland Environmental Monitoring and Control Technology,Henan Agricultural University,Zhengzhou 450002,China)

机构地区:[1]河南农业大学信息与管理科学学院,河南郑州450046 [2]河南农业大学农田环境监测与控制技术河南省工程实验室,河南郑州450002

出  处:《计算机工程与设计》2023年第8期2506-2515,共10页Computer Engineering and Design

基  金:国家重点研发计划课题基金项目(2016YFD0300609)。

摘  要:针对传统推荐模型面临的数据稀疏性问题,提出一种基于结合注意力机制的门控循环单元的融合语义和知识特征的推荐模型。基于知识图谱,使用连续词袋模型捕获项目实体对应的语义特征,依据“偏好扩散”思想进行知识特征的学习,将不同层面特征进行融合后,使用结合注意力机制的门控循环单元挖掘用户潜在兴趣偏好。基于MovieLens数据集的对比实验结果表明,所提模型能够有效提升推荐效果并缓解数据稀疏性问题,通过消融实验验证了该模型各个组件的有效性。To address the problem of data sparsity faced by traditional recommendation models,a recommendation model combining semantic feature and knowledge feature based on gated recurrent unit with attention mechanism was proposed.Based on knowledge graph,semantic feature and knowledge feature of the item entities were obtained with the continuous bag-of-words model and the idea of preference propagation.After integrating different features,the gated recurrent unit with the attention mechanism was used to capture potential interest preferences of users.Results of the comparative experiments on the MovieLens indicate that the proposed model can improve the performance of recommendation results and effectively alleviate influences of the data sparsity.The effectiveness of each component of the model is verified by ablation experiments.

关 键 词:推荐模型 知识图谱 特征融合 门控循环单元 注意力机制 语义特征 连续词袋 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象