Equicontinuity and Sensitivity of Group Actions  

在线阅读下载全文

作  者:Shaoting XIE Jiandong YIN 

机构地区:[1]Department of Mathematics,Nanchang University,Nanchang 330031,China

出  处:《Chinese Annals of Mathematics,Series B》2023年第4期501-516,共16页数学年刊(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.12061043,11661054)。

摘  要:Let(X,G)be a dynamical system(G-system for short),that is,X is a topological space and G is an infinite topological group continuously acting on X.In the paper,the authors introduce the concepts of Hausdorff sensitivity,Hausdorff equicontinuity and topological equicontinuity for G-systems and prove that a minimal G-system(X,G)is either topologically equicontinuous or Hausdorff sensitive under the assumption that X is a T_(3)-space and they provide a classification of transitive dynamical systems in terms of equicontinuity pairs.In particular,under the condition that X is a Hausdorff uniform space,they give a dichotomy theorem between Hausdorff sensitivity and Hausdorff equicontinuity for G-systems admitting one transitive point.

关 键 词:Hausdorff sensitivity Hausdorff equicontinuity Topological equicontinuity Even continuity 

分 类 号:O19[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象