Picard-Type Theorem and Curvature Estimate on an Open Riemann Surface with Ramification  

在线阅读下载全文

作  者:Zhixue LIU Yezhou LI 

机构地区:[1]School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China [2]Key Laboratory of Mathematics and Information Networks(Beijing University of Posts and Telecommunications),Ministry of Education,China

出  处:《Chinese Annals of Mathematics,Series B》2023年第4期533-548,共16页数学年刊(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.12101068,12261106,12171050)。

摘  要:Let M be an open Riemann surface and G:M→Pn(C)be a holomorphic map.Consider the conformal metric on M which is given by ds^(2)=‖■‖^(2m)|w|^(2),where■is a reduced representation of G,ωis a holomorphic 1-form on M and m is a positive integer.Assume that ds^(2) is complete and G is k-nondegenerate(0≤k≤n).If there are q hyperplanes H1,H2,…,Hq■Pn(C)located in general position such that G is ramified over Hj with multiplicity at leastγj(>k)for each j∈{1,2,…,q},and it holds that■,then M is flat,or equivalently,G is a constant map.Moreover,one further give a curvature estimate on M without assuming the completeness of the surface.

关 键 词:Picard-type theorem Holomorphic map Riemann surface Curvature estimate 

分 类 号:O186.11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象