检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹军文 覃祥富 胡轶坤 张文强[1] 于波[1] 张佑杰[1] CAO Junwen;QIN Xiangfu;HU Yikun;ZHANG Wenqiang;YU Bo;ZHANG Youjie(Institute of Nuclear and New Energy Technology,Tsinghua University,Beijing 100084,China)
机构地区:[1]清华大学核能与新能源技术研究院,北京100084
出 处:《清华大学学报(自然科学版)》2023年第8期1246-1256,共11页Journal of Tsinghua University(Science and Technology)
基 金:国家自然科学基金资助项目(91645126,21273128);清华大学自主科研计划项目(2018Z05JZY010);清华-MIT-剑桥低碳能源大学联盟种子基金项目(201LC004)。
摘 要:随着能源体系变革,氢能在能源系统中发挥着越来越重要的作用,绿色化、低碳化制氢技术日益受到关注。高温气冷堆耦合高温电解制氢技术是一种具有潜力的零碳排大规模绿氢制备技术。该文提出了热功率为250MW,氦气出口温度分别为750和950℃的高温气冷堆与高温电解制氢系统的耦合策略,建立了全流程ASPEN仿真模型,并分析了系统热电比对制氢产能和能耗的影响规律,据此评估并探讨了制氢成本及成本降低策略。结果表明:750和950℃制氢系统的最大氢产能分别为28108和35160m^(3)/h。在最大氢产能下,750℃制氢系统的耗电量和耗热量分别为3.73和0.49kW·h/m^(3),总能量转化效率为40.1%;950℃制氢系统的耗电量和耗热量分别为3.11和0.56kW·h/m^(3),总能量转化效率为50.2%。提升电解制氢模块的电流密度可显著降低制氢成本,电解模块阳极耦合制备油品等高附加值化工品一方面可以分摊制氢成本,另一方面可以拓展核能高温电解应用场景。[Objective] The green energy system revolution is accelerating,and hydrogen plays an increasingly important role in energy systems.However,the"green hydrogen production technique"with low carbon emissions evokes increasing concern.[Methods]This article suggests using a high-temperature electrolysis hydrogen production system coupled with a high-temperature gas-cooled reactor(HTGR),which has a heat power of 250 MW and a helium exit temperature of 750℃ or 95℃.An ASPEN simulation module of the full hydrogen production process was constructed,and the effects of the heat and electricity ratio on the hydrogen production rate and energy costs were analyzed.Based on the results,the hydrogen production costs were estimated,and cost reduction methods were discussed.[Results]The key results were as follows:1)a higher HTGR helium exit temperature resulted in a larger hydrogen production rate and lower energy costs.At 75℃,the maximum hydrogen production rate,electricity cost,heat cost,and total energy conversion efficiency of the HTGR hydrogen production system were 28108m^(3)/h,3.73kW.h/m^(3),0.49kW·h/m^(3),and 40.1%,respectively.However,at 950℃,the maximum hydrogen production rate increased to 35160 m^(3)/h,the electricity cost fell to 3.11 kw·h/m^(3),the heating cost increased to 0.56 kW·h/m^(3),and the total energy conversion efficiency rose to 50.2%.These data fitted a system with 7013 solid oxide electrolysis cell(SOEC)modules,as designed in this article.2)Increasing the current density of SOEC would significantly decrease the cost of investment in the hydrogen production system and,therefore,the hydrogen production costs.For a 95o℃HTGR hydrogen production system,if the current density rose from 1 A/cm^(2)to 5 A/cm^(2),the power density of SOEC would increase five times,and the number of SOEC modules would drop to one-fifth;therefore,the investment cost of the module would be low.Following upgrades and breakthroughs in SOEC stack integration technology,each module would contain 150 SOEC cells instead of 30,
分 类 号:TL424[核科学技术—核技术及应用]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249