检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高新成 邵国铭 张海洋 周中雨 GAO Xincheng;SHAO Guoming;ZHANG Haiyang;ZHOU Zhongyu(Modern Education Technology Center,Northeast Petroleum University,Daqing 163318,China;School of Computer&Information Technology,Northeast Petroleum University,Daqing 163318,China)
机构地区:[1]东北石油大学现代教育技术中心,黑龙江大庆163318 [2]东北石油大学计算机与信息技术学院,黑龙江大庆163318
出 处:《重庆理工大学学报(自然科学)》2023年第8期166-176,共11页Journal of Chongqing University of Technology:Natural Science
基 金:国家自然科学基金项目(61702093);中国高校产学研创新基金项目(2021ITA02011);黑龙江省教育科学规划重点课题(GJB1423357)。
摘 要:针对文本中存在冗余特征影响聚类精度等问题,提出一种结合蜣螂优化算法改进二进制麻雀搜索算法的特征选择及文本聚类算法。利用基于特征词权重的适应度函数完成文本特征评估,构建矢量空间模型;引入蜣螂优化算法中的圆周方向搜索机制,改进传统麻雀搜索算法中麻雀发现者位置更新策略,并融入滚动方向机制的随机游走策略提升全局搜索能力,结合转移函数对连续型麻雀位置进行更新,得到优化的二进制麻雀搜索算法,筛选出优质特征子集;选用k-means++算法完成文本聚类。通过多种基准函数及公共数据集进行验证,结果表明:所提方法能够有效降低文本特征维度,提高聚类效果。This paper proposes a feature selection and text clustering algorithm that improves the binary sparrow search algorithm by combining the dung beetle optimization algorithm to address the issue of redundant features affecting clustering accuracy in text.The algorithm first uses the fitness function based on the weight of feature words to complete the text feature evaluation and build a vector space model;Then,the circular direction search mechanism in the dung beetle optimization algorithm is introduced to improve the position update strategy of the sparrow finder in the traditional sparrow search algorithm,and the random walk strategy with the rolling direction mechanism is integrated to improve the global search ability.Combined with the transfer function,the continuous final sparrow position is updated to obtain the optimized binary sparrow search algorithm,and high-quality feature subsets are screened out;Finally,the k-means++algorithm was selected to complete text clustering.Validated through multiple benchmark functions and public dataset experiments.The results indicate that the method proposed in this article can effectively reduce the dimension of text features and improve clustering performance.
关 键 词:特征选择 蜣螂优化算法 二进制麻雀搜索算法 k-means++ 文本聚类 特征词权重
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249