基于深度神经网络的可见光通信室内定位  被引量:1

Indoors positioning of visible light communication based on deep neural network

在线阅读下载全文

作  者:朱亚丽[1] ZHU Yali(School of Electronics and Information,Jiangsu Vocational College of Business,Nantong 2260o0,China)

机构地区:[1]江苏商贸职业学院电子与信息学院,江苏南通226000

出  处:《光学技术》2023年第4期452-458,共7页Optical Technique

基  金:江苏省教育科学“十三五”规划重点课题(B-a/2020/03/07);南通市基础科学研究计划项目(JCZ2022087)。

摘  要:针对基于接收信号强度的可见光通信系统室内定位精度低的问题,提出一种基于深度神经网络的可见光通信系统室内定位方法。方法采用可见光信道估计技术进行室内距离测量,以解决接收信号强度稳定性与可靠性不足的问题。此外,设计了深度神经网络在离线阶段学习光电二极管距离向量的分布特性,以避免光信号不稳定导致误差升高的问题.在线上阶段基于多距离向量对目标进行定位,可在满足时间效率要求的情况下提高定位精度。仿真结果表明,在室内场景下,该方法的平均定位精度优于传统三角定位法与基于接收信号强度的定位方法。Aiming at the problem that the positioning precision of received signal strength based indoors positioning methods for visible light communication system is low,a new indoors positioning method for visible light communication system based on deep neural networks is proposed.In this method,the visible light channel estimation technique is adopted to measure the indoors distance,so that the problems of insufficient stability and reliability of the received signal strength are resolved.Besides,a deep neural network is designed to learn the distribution characteristics of the distance vectors of the photodiode in offline phase,in order to avoid the problem that the instable light signals lead to error growth.In online phase,the target is positioned based on multiple distance vectors,thus the positioning precision can be improved further,at the same time,the time efficiency meets the requirements.Simulation results show that,in the indoors scenario,the proposed method achieves better positioning precision than traditional triangulation methods and received signal strength based positioning methods.

关 键 词:可见光通信 接收信号强度 室内距离测量 光信道估计 深度神经网络 室内定位 

分 类 号:TP394.1[自动化与计算机技术—计算机应用技术] TH691.9[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象