检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱亚丽[1] ZHU Yali(School of Electronics and Information,Jiangsu Vocational College of Business,Nantong 2260o0,China)
机构地区:[1]江苏商贸职业学院电子与信息学院,江苏南通226000
出 处:《光学技术》2023年第4期452-458,共7页Optical Technique
基 金:江苏省教育科学“十三五”规划重点课题(B-a/2020/03/07);南通市基础科学研究计划项目(JCZ2022087)。
摘 要:针对基于接收信号强度的可见光通信系统室内定位精度低的问题,提出一种基于深度神经网络的可见光通信系统室内定位方法。方法采用可见光信道估计技术进行室内距离测量,以解决接收信号强度稳定性与可靠性不足的问题。此外,设计了深度神经网络在离线阶段学习光电二极管距离向量的分布特性,以避免光信号不稳定导致误差升高的问题.在线上阶段基于多距离向量对目标进行定位,可在满足时间效率要求的情况下提高定位精度。仿真结果表明,在室内场景下,该方法的平均定位精度优于传统三角定位法与基于接收信号强度的定位方法。Aiming at the problem that the positioning precision of received signal strength based indoors positioning methods for visible light communication system is low,a new indoors positioning method for visible light communication system based on deep neural networks is proposed.In this method,the visible light channel estimation technique is adopted to measure the indoors distance,so that the problems of insufficient stability and reliability of the received signal strength are resolved.Besides,a deep neural network is designed to learn the distribution characteristics of the distance vectors of the photodiode in offline phase,in order to avoid the problem that the instable light signals lead to error growth.In online phase,the target is positioned based on multiple distance vectors,thus the positioning precision can be improved further,at the same time,the time efficiency meets the requirements.Simulation results show that,in the indoors scenario,the proposed method achieves better positioning precision than traditional triangulation methods and received signal strength based positioning methods.
关 键 词:可见光通信 接收信号强度 室内距离测量 光信道估计 深度神经网络 室内定位
分 类 号:TP394.1[自动化与计算机技术—计算机应用技术] TH691.9[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7